【题目】如图所示,已知AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=6,BC=9,则△ADE的面积为_____.
【答案】9.
【解析】
知道AD的长,只要求出AD边上的高,就可以求出△ADE的面积;过点D作DG⊥BC于G,过点E作EF⊥AD交AD的延长线于F,构造出△EDF≌△CDG,求出GC的长,即为EF的长,利用三角形的面积公式解答即可.
过点D作DG⊥BC于G,过点E作EF⊥AD交AD的延长线于F,如图所示:
则四边形ABGD是矩形,
∴AD=BG,
∵∠EDF+∠FDC=90°,
∠GDC+∠FDC=90°,
∴∠EDF=∠GDC,
在△EDF和△CDG中,
,
∴△EDF≌△CDG(AAS),
∴EF=CG=BC-BG=BC-AD=9-6=3,
∴S△ADE=ADEF=×6×3=9,
故答案为:9.
科目:初中数学 来源: 题型:
【题目】如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点,其中正确的分法有
A. 1种 B. 2种 C. 3种 D. 4种
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是( )
A.20°B.30°C.25°D.15°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:
单层部分的长度x(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
双层部分的长度y(cm) | … | 73 | 72 | 71 | … |
(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;
(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;
(3)设挎带的长度为lcm,求l的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,,,点P是对角线AC上的动点不与点A,C重合,连接PD,作交射线BC于点E,以线段PD,PE为邻边作矩形PEFD.
线段PD的最小值为______;
求证:,并求矩形PEFD面积的最小值;
是否存在这样的点P,使得是等腰三角形?若存在,请求出PE的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为6 cm的等边三角形,动点P从A出发,以3 cm/s的速度,沿A-B-C向C运动,同时,动点Q从C出发沿CA方向以1 cm/s的速度向A运动,当其中一点运动到终点时,两点同时停止运动.设运动时间为t秒,当t= ____s,△APQ是直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.
(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?
(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com