【题目】(2017四川省达州市,第10题,3分)已知函数的图象如图所示,点P是y轴负半轴上一动点,过点P作y轴的垂线交图象于A,B两点,连接OA、OB.下列结论:
①若点M1(x1,y1),M2(x2,y2)在图象上,且x1<x2<0,则y1<y2;
②当点P坐标为(0,﹣3)时,△AOB是等腰三角形;
③无论点P在什么位置,始终有S△AOB=7.5,AP=4BP;
④当点P移动到使∠AOB=90°时,点A的坐标为(,).
其中正确的结论个数为( )
A.1B.2C.3D.4
【答案】C
【解析】
试题①错误.∵x1<x2<0,函数y随x是增大而减小,∴y1>y2,故①错误.
②正确.∵P(0,﹣3),∴B(﹣1,﹣3),A(4,﹣3),∴AB=5,OA==5,∴AB=AO,∴△AOB是等腰三角形,故②正确.
③正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,∴PA=4PB,∵SAOB=S△OPB+S△OPA==7.5,故③正确.
④正确.设P(0,m),则B(,m),A(﹣,m),∴PB=﹣,PA=﹣,OP=﹣m,∵∠AOB=90°,∠OPB=∠OPA=90°,∴∠BOP+∠AOP=90°,∠AOP+∠OPA=90°,∴∠BOP=∠OAP,∴△OPB∽△APO,∴,∴OP2=PBPA,∴m2=﹣(﹣),∴m4=36,∵m<0,∴m=﹣,∴A(,﹣),故④正确,∴②③④正确,故选C.
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.
(1)若∠AOC=100°,则∠D的度数为 ,∠A的度数为 ;
(2)求证:∠ADC=2∠DAB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,完成相应的学习任务:如图(1)在线段AB上找一点C,C把AB分为AC和BC两条线段,其中AC>BC.若AC,BC,AB满足关系AC2=BCAB.则点C叫做线段AB的黄金分割点,这时=≈0.618,人们把叫做黄金分割数,我们可以根据图(2)所示操作方法我到线段AB的黄金分割点,操作步骤和部分证明过程如下:
第一步,以AB为边作正方形ABCD.
第二步,以AD为直径作⊙F.
第三步,连接BF与⊙F交于点G.
第四步,连接DG并延长与AB交于点E,则E就是线段AB的黄金分割点.
证明:连接AG并延长,与BC交于点M.
∵AD为⊙F的直径,
∴∠AGD=90°,
∵F为AD的中点,
∴DF=FG=AF,
∴∠3=∠4,∠5=∠6,
∵∠2+∠5=90°,∠5+∠4=90°,
∴∠2=∠4=∠3=∠1,
∵∠EBG=∠GBA,
∴△EBG∽△GBA,
∴=,
∴BG2=BEAB…
任务:
(1)请根据上面操作步骤与部分证明过程,将剩余的证明过程补充完整;(提示:证明BM=BG=AE)
(2)优选法是一种具有广泛应用价值的数学方法,优选法中有一种0.618法应用了黄金分割数.为优选法的普及作出重要贡献的我国数学家是 (填出下列选项的字母代号)
A.华罗庚
B.陈景润
C.苏步青
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).
(1)证明:四边形AECF是菱形;
(2)求菱形AECF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示,请根据图表信息解答下列问题:
组别 | 分数段(分) | 频数 |
A组 | 60≤x<70 | 30 |
B组 | 70≤x<80 | 90 |
C组 | 80≤x<90 | m |
D组 | 90≤x<100 | 60 |
(1)本次调查的总人数为 人.
(2)补全频数分布直方图;
(3)若A组学生的平均分是65分,B组学生的平均分是75分,C组学生的平均分是85分,D出学生的平均分是95分,请你估计参加本次测试的同学们平均成绩是多少分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+5的图象与反比例函数(k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式及点B坐标;
(2)在第一象限内,当一次函数y=-x+5的值大于反比例函数(k≠0)的值时,写出自变量x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com