精英家教网 > 初中数学 > 题目详情

【题目】某种蔬菜每千克售价(元)与销售月份之间的关系如图1所示,每千克成本(元)与销售月份之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(61).

1)求出之间满足的函数表达式,并直接写出的取值范围;

2)求出之间满足的函数表达式;

3)设这种蔬菜每千克收益为元,试问在哪个月份出售这种蔬菜,将取得最大值?并求出此最大值.(收益=售价-成本)

【答案】(1)y1=﹣x+7(3≤x≤6);(2)y2=(x﹣6)2+1;(3)5月出售这种蔬菜,每千克收益最大

【解析】

(1)设y1=kx+b,y2=a(x-b)2+c,代入各点求出未知量,(2)收益=售价-成本,列出函数解析式,求出最大值.

(1)设y1=kx+b,

∵直线经过(3,5)、(6,3),

,解得:

y1=﹣x+7(3≤x≤6),

(2)设y2=a(x﹣6)2+1,

把(3,4)代入得:4=a(3﹣6)2+1,

解得a=

y2=(x﹣6)2+1,

(3)由题意得:w=y1﹣y2=﹣x+7﹣[(x﹣6)2+1],

=﹣x2+=﹣

x=5时,y最大值=

5月出售这种蔬菜,每千克收益最大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列命题的逆命题成立的是(  ).

A.全等三角形的对应角相等

B.若三角形的三边满足,则该三角形是直角三角形

C.对顶角相等

D.同位角互补,两直线平行

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知中,分别为上的点,且,连并延长交

(1)当时,求的值;

(2)当时,求证:

(3)当________时,中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC

(1)求点A、C的坐标;

(2)将ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图);

(3)在坐标平面内,是否存在点P(除点B外),使得APC与ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王老师将个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.

摸球的次数

摸到黑球的次数

摸到黑球的频率

补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________(精确到0.01);

估算袋中白球的个数;

的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算他两次都摸出白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片ABCD中,AB4BC6,点EAB边上,将纸片沿CE折叠,点B落在点F处,EFCF分别交AD于点GH,且EGGH,则AE的长为( )

A. B. 1C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图,正方形ABCD中,点EF分别在边BCCD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EFAG.求证:EF=FG

2)如图,等腰直角三ABC中,∠BAC=90°AB=AC,点MN在边BC上,且∠MAN=45°,若BM=1CN=3,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】[问题情境]

已知矩形的面积为一定值1,当该矩形的一组邻边分别为多少时,它的周长最小?最小值是多少?

[数学模型]

设该矩形的一边长为x,周长为L,则Lx的函数表达式为    

[探索研究]

小彬借鉴以前研究函数的经验,先探索函数的图象性质.

1)结合问题情境,函数的自变量x的取值范围是    

如表是yx的几组对应值.

x

1

2

3

m

y

4

3

2

2

2

3

4

直接写出m的值;

画出该函数图象,结合图象,得出当x=    时,y有最小值,y的最小值为    

[解决问题]

2)直接写出“问题情境”中问题的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(,0),点B(0,1),作第一个正方形OA1C1B1且点A1OA上,点B1OB上,点C1AB上;作第二个正方形A1A2C2B2且点A2A1A上,点B2A1C2上,点C2AB,如此下去,则点Cn的纵坐标为________

查看答案和解析>>

同步练习册答案