【题目】如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.
(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;
(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
【答案】
(1)解:∵顶点A的横坐标为x=﹣ =1,且顶点A在y=x﹣5上,
∴当x=1时,y=1﹣5=﹣4,
∴A(1,﹣4).
(2)解:△ABD是直角三角形.
将A(1,﹣4)代入y=x2﹣2x+c,可得,1﹣2+c=﹣4,∴c=﹣3,
∴y=x2﹣2x﹣3,∴B(0,﹣3)
当y=0时,x2﹣2x﹣3=0,x1=﹣1,x2=3
∴C(﹣1,0),D(3,0),
BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,
BD2+AB2=AD2,
∴∠ABD=90°,即△ABD是直角三角形.
(3)解:存在.
由题意知:直线y=x﹣5交y轴于点E(0,﹣5),交x轴于点F(5,0)
∴OE=OF=5,
又∵OB=OD=3
∴△OEF与△OBD都是等腰直角三角形
∴BD∥l,即PA∥BD
则构成平行四边形只能是PADB或PABD,如图,
过点P作y轴的垂线,过点A作x轴的垂线交过P且平行于x轴的直线于点G.
设P(x1,x1﹣5),则G(1,x1﹣5)
则PG=|1﹣x1|,AG=|5﹣x1﹣4|=|1﹣x1|
PA=BD=3
由勾股定理得:
(1﹣x1)2+(1﹣x1)2=18,x12﹣2x1﹣8=0,x1=﹣2或4
∴P(﹣2,﹣7)或P(4,﹣1),
存在点P(﹣2,﹣7)或P(4,﹣1)使以点A、B、D、P为顶点的四边形是平行四边形.
【解析】(2)方法二:把A(1,﹣4)代入y=x2﹣2x+c,得c=﹣3,
∴y=x2﹣2x+3=(x﹣3)(x+1),
∴D(3,0),B(0,﹣3),A(1,﹣4),
KBD= =1,KAB= =﹣1,
∴KBDKAB=﹣1,
∴AB⊥BD,即△ABD为直角三角形.
【考点精析】利用平行线的判定和等腰三角形的性质对题目进行判断即可得到答案,需要熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;等腰三角形的两个底角相等(简称:等边对等角).
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是( )
A. BC=B′C′ B. ∠A=∠A′ C. AC=A′C′ D. ∠C=∠C′
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中,为坐标原点,点的坐标为,点的坐标为,点的坐标为,其中满足方程组.
(1)若点到轴的距离为6,则的值为_________;
(2)连接,线段沿轴方向向上平移到线段,则点到直线的距离为_______,线段扫过的面积为15,则点平移后对应点的纵坐标为_______;
(3)连接,,,若的面积小于等于12,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,长方形OABC的边OC、OA分别在x轴、y轴上,B点在第一象限,点A的坐标是(0,4),OC=8.
(1)直接写出点B、C的坐标;
(2)点P从原点O出发,在边OC上以每秒1个单位长度的速度匀速向C点移动,同时点Q从点B出发,在边BA上以每秒2个单位长度的速度匀速向A点移动,当一个点到达终点时,另一个点随之停止移动,设移动的时间为t秒钟,探究下列问题:
① 当t值为多少时,直线PQ∥y轴?
② 在整个运动过程中,能否使得四边形BCPQ的面积是长方形OABC的面积的?若能,请直接写出P、Q两点的坐标;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)求证:到线段两端距离相等的点在线段的垂直平分线上.(要求:画出图形,写出已知,求证和证明过程)
(2)用(1)中的结论解决:如图,△ABC中,∠A=30°,∠C=90°,BE平分∠ABC, 求证:点E在线段AB的垂直平分线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数y=x2﹣2mx﹣3,下列结论错误的是( )
A.它的图象与x轴有两个交点
B.方程x2﹣2mx=3的两根之积为﹣3
C.它的图象的对称轴在y轴的右侧
D.x<m时,y随x的增大而减小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是( )
A.
B.
C.1
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们用[a]表示不大于a的最大整数,例如:[3.5]=3,[4]=4,[-1.5]=-2;用{a}表示大于a的最小整数,例如:{3.5}=4,{1}=2,{-2.5}=-2.解决下列问题:
(1)[-5.5]等于多少,{2.5}等于多少;
(2)若[x]=3,写出x的取值范围;若{y}=-2,写出y的取值范围.
(3)已知x,y满足方程组,求x,y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com