精英家教网 > 初中数学 > 题目详情
16.已知△ABD≌△CDB,AD=BD,BE⊥AD于E,∠EBD=20°,则∠CDE的度数为125°或15°.

分析 由直角三角形的性质求出∠BDA的度数,由等腰三角形的性质和三角形内角和定理求出∠A=∠ABD=55°,由全等三角形的性质得出∠CBD=∠BDA=70°,BC=BD,∠BDC=∠C=55°,分两种情况,即可得出结果.

解答 解:∵BE⊥AD于E,∠EBD=20°,
∴∠BDA=90°-20°=70°,
∵AD=BD,∴∠A=∠ABD=55°,
∵△ABD≌△CDB,
∴∠CBD=∠BDA=70°,BC=BD,∠BDC=∠C=55°,
分两种情况:
①如图1所示:∠CDE=70°+55°=125°;
②如图2所示:∠CDE=70°-55°=15°;
综上所述:∠CDE的度数为125°或15°;
故答案为:125°或15°.

点评 本题考查了全等三角形的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理;根据题意画出图形,分两种情况讨论是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.已知a=5-2$\sqrt{6}$,则a2-10a+1的值是(  )
A.-30$\sqrt{6}$B.-18$\sqrt{6}$-2C.0D.10$\sqrt{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,把含有30°角的三角板ABO置入平面直角坐标系中,A,B两点坐标分别为(3,0)和(0,3$\sqrt{3}$).动点P从A点开始沿折线AO-OB-BA运动,点P在AO,OB,BA上运动,速度分别为1,$\sqrt{3}$,2(长度单位/秒).一直尺的上边缘l从x轴的位置开始以$\frac{\sqrt{3}}{3}$(长度单位/秒)的速度向上平行移动(即移动过程中保持l∥x轴),且分别与OB,AB交于E,F两点﹒设动点P与动直线l同时出发,运动时间为t秒,当点P沿折线AO-OB-BA运动一周时,直线l和动点P同时停止运动.
请解答下列问题:
(1)直接写出过A,B两点的直线解析式是y=-$\sqrt{3}$x+3$\sqrt{3}$;
(2)当t﹦5时,点P的坐标为(0,2$\sqrt{3}$);当t﹦$\frac{9}{2}$,点P与点E重合;
(3)求在运动过程中使∠FEP=30°的t值;
(4)当t=1时,在坐标平面上是否存在点Q,使得△FEQ∽△BEP(F,E,Q分别与B,E,P对应)?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知△ABC是⊙O的内接三角形.
(1)如图(1)若AC=2,∠ABC=30°,试求图中阴影部分的面积;
(2)如图(2),BD是⊙O的直径,AE⊥BC;
①求证:△AEC∽△BAD;
②若AB=$\sqrt{2}$,AD=2$\sqrt{2}$,∠ABC=45°,试求线段AC和BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.先化简,再求值:($\frac{{x}^{2}}{x-1}$-$\frac{{x}^{2}}{1-x}$)÷$\frac{2x}{{x}^{2}-1}$,其中x为方程x2+x-3=0的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)$({-48})×\frac{7}{3}÷({-16})$;
(2)52-3×[-32+(-2)×(-3)]+(-4)3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.下列运算正确的是(  )
A.若x=y,则$\frac{x}{a}$=$\frac{y}{a}$B.若$\frac{x}{y}$(y≠0),则$\frac{xy}{{y}^{2}}$
C.若$\frac{x}{y}$(y≠0),则$\frac{x+a}{y+a}$D.若x2=y2,则x=y

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)计算:(-4)-(-1)+(-9)
(2)计算:-12016+16÷(-2)3×|-3-1|
(3)解方程:x-$\frac{x-1}{2}$=2-$\frac{x+2}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=3.

查看答案和解析>>

同步练习册答案