精英家教网 > 初中数学 > 题目详情

【题目】初一(1)班针对你最喜爱的课外活动项目对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.

男、女生所选项目人数统计表

项目

男生(人数)

女生(人数)

机器人

7

9

3D打印

m

4

航模

2

2

其他

5

n

根据以上信息解决下列问题:

1m   n   

2)扇形统计图中机器人项目所对应扇形的圆心角度数为   °

3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.

【答案】(1)8,3;(2)144;(3)

【解析】

1)由航模的人数和其所占的百分比可求出总人数,进而可求出3D打印的人数,则m的值可求出,从而n的值也可求出;

2)由机器人项目的人数所占总人数的百分比即可求出所对应扇形的圆心角度数;

3)应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.

解:(1)由两种统计表可知:总人数=4÷10%40人,

3D打印项目占30%

3D打印项目人数=40×30%12人,

m1248

n401612453

故答案为:83

2)扇形统计图中机器人项目所对应扇形的圆心角度数=×360°144°

故答案为:144

3)列表得:

1

2

1

2

1

﹣﹣

21

11

21

2

12

﹣﹣

12

22

1

11

21

﹣﹣

21

2

12

22

12

﹣﹣

由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中/span>“1名男生、1名女生8种可能.

所以P 1名男生、1名女生)=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点E在正方形ABCD的边CD上运动,ACBE相交于点F

1)如图1,当点E运动到DC的中点时,求△ABF与四边形ADEF的面积之比;

2)如图2,当点E运动到CEED21时,求△ABF与四边形ADEF的面积之比;

3)当点E运动到CEEDn1时(n是正整数),猜想△ABF与四边形ADEF的面积之比(只写结果,不要求写过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知在△ABC中,∠B=90°,AB=6cm,BC=12cm,点Q从点A开始沿AB边向点B1cm/s的速度移动,点P从点B开始沿BC边向点C2cm/s的速度移动.

(1)如果Q、P分别从A、B两点出发,那么几秒后,△PBQ的面积等于8cm2

(2)在(1)中,△PBQ的面积能否等于10cm2?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为  ▲  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OF是∠MON的平分线,点A在射线OM上,PQ是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OFON交于点B、点C,连接ABPB

1)如图1,当PQ两点都在射线ON上时,请直接写出线段ABPB的数量关系;

2)如图2,当PQ两点都在射线ON的反向延长线上时,线段ABPB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;

3)如图3MON=60°,连接AP,设=k,当PQ两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.

【答案】(1)AB=PB;(2)存在;(3)k=0.5.

【解析】试题分析:(1)结论:AB=PB.连接BQ,只要证明AOB≌△PQB即可解决问题;

2)存在.证明方法类似(1);

3)连接BQ.只要证明ABP∽△OBQ,即可推出=,由AOB=30°,推出当BAOM时, 的值最小,最小值为0.5,由此即可解决问题;

试题解析:解:(1)连接:AB=PB.理由:如图1中,连接BQ

BC垂直平分OQBO=BQ∴∠BOQ=∠BQOOF平分MON∴∠AOB=∠BQOOA=PQ∴△AOB≌△PQBAB=PB

2)存在,理由:如图2中,连接BQ

BC垂直平分OQBO=BQ∴∠BOQ=∠BQOOF平分MONBOQ=∠FON∴∠AOF=∠FON=∠BQC∴∠BQP=∠AOBOA=PQ∴△AOB≌△PQBAB=PB

3)连接BQ

易证ABO≌△PBQ∴∠OAB=BPQAB=PB∵∠OPB+BPQ=180°∴∠OAB+OPB=180°AOP+ABP=180°∵∠MON=60°∴∠ABP=120°BA=BP∴∠BAP=BPA=30°BO=BQ∴∠BOQ=BQO=30°∴△ABP∽△OBQ =∵∠AOB=30°BAOM时, 的值最小,最小值为0.5k=0.5

点睛:本题考查相似综合题、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.

型】解答
束】
28

【题目】如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PEx轴,垂足为E,交直线l于点F.

(1)试求该抛物线表达式;

(2)如图(1),若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;

(3)如图(2),过点P作PHy轴,垂足为H,连接AC.

求证:ACD是直角三角形;

试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与ACD相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.

(1)求一次函数和反比例函数的解析式;

(2)求AOB的面积;

(3)观察图象,直接写出不等式kx+b﹣>0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,抛物线y=﹣x2+bx+cx轴,y轴分别相交于点A(﹣10),B03)两点,其顶点为D

1)求该抛物线的解析式;

2)若抛物线与x轴另一个交点为E,求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,时,

求一次函数的表达式;

若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,AB为⊙O直径,AB=12AD平分∠BAC,交BC于点 E,交⊙O于点D,连接BD.

1)求证:BAD=CBD

2)若∠AEB=125°,求的长.

查看答案和解析>>

同步练习册答案