分析 (1)连接OC,由CD是⊙O的切线,AD⊥CD可以得到OC∥AD,然后可以推出∠1=∠2,又OC=OA,由等边对等角得∠1=∠3,所以∠2=∠3,即AC平分∠DAB;
(2)首先证明△ADC∽△ACB,求得AC的长,根据相似三角形对应边的比相等求解.
解答
(1)证明:如右图所示,连接OC,
∵CD是⊙O的切线,
∴OC⊥CD;
又AD⊥CD,
∴OC∥AD,
∴∠1=∠2,
∵OC=OA,
∴∠1=∠3,
∴∠2=∠3,即AC平分∠DAB.
(2)解:∵AB是圆的直径,
∴∠ACB=90°.
∴∠ACB=∠ADC,
又∵∠1=∠3,
∴△ADC∽△ACB.
∴$\frac{AC}{AB}$=$\frac{AD}{AC}$.
∵直角△ADC中,∠ADC=90°,AD=6,CD=2$\sqrt{3}$,
∴AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$\sqrt{{6}^{2}+(2\sqrt{3})^{2}}$=4$\sqrt{3}$.
∴$\frac{4\sqrt{3}}{AB}$=$\frac{6}{4\sqrt{3}}$,
解得:AB=8.
∵AB是直径,
∴圆的半径是4.
点评 本题考查了切线的性质以及相似三角形的判定与性质,正确证明△ADC∽△ACB是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{3}π$ | B. | $\frac{3}{8}π$ | C. | $\frac{1}{2}π$ | D. | $\frac{2}{3}π$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (13,8) | B. | (13,10) | C. | (14,8) | D. | (14,10) |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com