【题目】如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,6),对称轴为直线x=2,顶点为D.求二次函数的解析式及四边形ADBC的面积.
【答案】y=2x2﹣8x+6;8
【解析】
(1)根据二次函数的对称轴为直线x=2,设出二次函数解析式,把A与C坐标代入求出a与k的值,确定出二次函数解析式;
(2)找出函数图象顶点D的坐标,进而根据对称性求得B的坐标,根据S四边形ADBC=S△ABD+S△ABC求得即可.
(1)设二次函数解析式为y=a(x﹣2)2+k,
把A(1,0),C(0,6)代入得:,
解得:,
则二次函数解析式为y=2(x﹣2)2﹣2=2x2﹣8x+6;
(2)∵y=2(x﹣2)2﹣2,
∴顶点D的坐标为(2,﹣2),
由A(1,0),对称轴为直线x=2可知另一个与x轴的交点B(3,0),
∴AB=2,
∴S四边形ADBC=S△ABD+S△ABC==8.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山.汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=100千米,∠A=45°,∠B=30°.
(1)开通隧道前,汽车从A地到B地要走多少千米?
(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=﹣x2+2x+c与x轴交于A、B两点,其中点A(﹣1,0),抛物线与y轴交于点C,顶点为D.
(1)如图2,直线l是抛物线的对称轴,点P是直线l上一动点,是否存在点P,使△PBC是直角三角形?若存在,求点P的坐标;若不存在,说明理由.
(2)如图3,连接BC,点M是直线BC上方的抛物线上的一个动点,当△MBC的面积最大时,求△MBC的面积的最大值;点N是线段BC上的一点,求MN+BN的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,﹣3),C(0,﹣3)
(1)求抛物线的表达式;
(2)设点D是抛物线上一点,且点D的横坐标为﹣2,求△AOD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2-x-6与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.
(1)用配方法求该抛物线的顶点坐标;
(2)求sin∠OCB的值;
(3)若点P(m,m)在该抛物线上,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,将∠ABC绕点A按逆时针方向旋转一定角度后,BC的对应边B'C'交CD边于点G.连接BB'、CC'.若AD=7,CG=4,AB'=B'G,则
=__(结果保留根号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com