精英家教网 > 初中数学 > 题目详情

【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有人;
(2)请你将条形统计图补充完成;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).

【答案】
(1)200
(2)解:C项目对应人数为:200﹣20﹣80﹣40=60(人);

补充如图.


(3)解:列表如下:

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

(丁,丙)

(甲,丁)

(乙,丁)

(丙,丁)

∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,

∴P(选中甲、乙)= =


【解析】解:(1)根据题意得:这次被调查的学生共有20÷ =200(人). 故答案为:200;
(1)由题意可知这次被调查的学生共有20÷ =200(人);(2)首先求得C项目对应人数为:200﹣20﹣80﹣40=60(人),继而可补全条形统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】南水北调工程中线自201412月正式通水以来,沿线多座大中城市受益,河南、河北、北京及天津四个省(市)的水资源紧张态势得到缓解,有效促进了地下水资源的涵养和恢复.若与上年同期相比,北京地下水的水位下降记为负,回升记为正,记录从2013年底以来,北京地下水水位的变化得到下表:

时间

2013年底

2014年底

2015年底

2016年底

2017年底

20189月底

地下水位与上年同比变化量(单位:

-0.25

-1.14

-0.09

+0.52

+0.26

+2.12

以下关于2013年以来北京地下水水位的说法不正确的是(

A. 2014年底开始,北京地下水水位的下降趋势得到缓解

B. 2015年底到2016年底,北京地下水水位首次回升

C. 2013年以来,每年年底的地下水位与上年同比的回升量最大的是2018

D. 20189月底的地下水位低于2012年底的地下水水位

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,操场的两端为半圆形,中间是一个长方形. 已知半圆的半径为r,直跑道的长为l,请用关于rl的多项式表示这个操场的面积. 这个多项式能分解因式吗?若能,请把它分解因式,并计算当r40ml30πm时操场的面积(结果保留π);若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】⑴如图1,点M、N分别在∠AOB的边OA、OB上,且OM=ON,过点M、N分别作MPOA、NPOB,MP、NP交于P,E、F分别为线段MP、NP上的点,且∠EOF=AOB,延长PMS,使MS=NF,连接OS,则∠EOF与∠EOS的数量关系为 ,线段NF、EM、EF的数量关系为

⑵如图2,点M、N分别在∠AOB的边OA、OB上,且OM=ON,, E、F分别为线段MP、NP上的点,且∠EOF=AOB,⑴中的线段NF、EM、EF的数量关系是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明。

⑶如图3,点M、N分别在∠AOB的边OA、OB上,且OM=ON,, E、F分别为线段PM、NP延长线上的点,且∠EOF=AOB,⑴中的线段NF、EM、EF的数量关系是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市为加快美丽乡村建设,建设秀美幸福宿州,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;甲镇建设了2A类村庄和5B类村庄共投入资金1140万元.

(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?

(2)乙镇3A类美丽村庄和6B类村庄改建共需资金多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个正整数能表示成两个连续偶数的平方差,那么这个正整数为“神秘数”.

如:

因此,4,12,20这三个数都是神秘数.

(1)282012这两个数是不是神秘数?为什么?

(2)设两个连续偶数为(其中为非负整数),由这两个连续偶数构造的神秘数是4的倍数,请说明理由.

(3)两个连续奇数的平方差(取正数)是不是神秘数?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本题6分在一次消防演习中,消防员架起一架25米长的云梯AB,如图斜靠在一面墙上,梯子底端B离墙角C的距离为7米

1求这个梯子的顶端距地面的高度AC是多少?

2如果消防员接到命令,按要求将梯子底部在水平方向滑 动后停在DE的位置上云梯长度不变,测得BD长为8米,那么云梯的顶部在下滑了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下

组别

睡眠时间x(小时)

A

4.5≤x<5.5

B

5.5≤x<6.5

C

6.5≤x<7.5

D

7.5≤x<8.5

E

8.5≤x<9.5

根据图表提供的信息,回答下列问题:
(Ⅰ)直接写出统计图中a的值
(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:

3+22+2+1()2+2+1(+1)2

5+22+2+3()2+2××+()2(+)2

(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:

①4+2②6+4

(2)a+4(m+n)2,且amn都是正整数,试求a的值.

查看答案和解析>>

同步练习册答案