【题目】如图,二次函数的图象经过点,点,交y轴于点C,给出下列结论::b::2:3;若,则;对于任意实数m,一定有;一元二次方程的两根为和,其中正确的结论是
A. B. C. D.
【答案】C
【解析】
由抛物线上的两点坐标可以求出y=ax2+bx+c中a、b、c之间的倍数关系,可以用含有a的代数式表示b、c,再用带入求值法判定其它选项,具体见详解.
解:∵二次函数y=ax2+bx+c的图象经过点A(﹣1,0),点B(3,0),
∴抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,
∴b=﹣2a,c=﹣3a,
∴a:b:c=﹣1:2:3,故①正确;
当x=4时,y=a(x+1)(x﹣3)=a51=5a,y=ax2﹣2ax﹣3a=a[(x﹣1)2﹣4]=a(x﹣1)2﹣4a,
∴当0<x<4时,则5a<y<﹣4a,所以②错误;
∵y=ax2﹣2ax﹣3a=a[(x﹣1)2﹣4]=a(x﹣1)2﹣4a,
∴顶点坐标为(1,﹣4a),
∵抛物线开口向下, c=﹣3a,
∴抛物线向下平移﹣4a个单位,则抛物线顶点为(1,0),
∴平移后的解析式为:y′=ax2+bx+c+4a=ax2+bx﹣3a+4a=ax2+bx+a≤0,故③正确;
∵b=﹣2a,c=﹣3a,
∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,
整理得3x2+2x﹣1=0,解得x1=﹣1,x2= ,所以④正确.
故选:C.
科目:初中数学 来源: 题型:
【题目】在下列命题中:①有一个外角是的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的三角形是等边三角形;④三个外角都相等的三角形是等边三角形.正确的命题有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016浙江省丽水市)如图,在菱形ABCD中,过点B作BE⊥AD,BF⊥CD,垂足分别为点E,F,延长BD至G,使得DG=BD,连结EG,FG,若AE=DE,则=____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k为常数,k≠0)与双曲线y=(m为常数,m>0)的交点为A(4,1)、B(﹣1,﹣4),连接AO并延长交双曲线于点E,连接BE.
(1)分别求出这两个函数的表达式;
(2)求△ABE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从某幢建筑物10m高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与地面垂直).抛物线的最高点M离墙1m,离地面m.
(1)建立适当的平面直角坐标系,求抛物线的解析式.
(2)求水的落地点B与点O的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=5cm,BC=13cm,点D在线段AC上,且CD=7cm,动点P从距B点15cm的E点出发,以每秒2cm的速度沿射线EA的方向运动,时间为t秒.
(1)求AD的长.
(2)用含有t的代数式表示AP的长.
(3)在运动过程中,是否存在某个时刻,使△ABC与△ADP全等?若存在,请求出t值;若不存在,请说明理由.
(4)直接写出t=______秒时,△PBC为等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD是平行四边形.
(1)用直尺和圆规在BC、AD上分别求作点E,F使AECF为菱形(不要求写作法,保留作图痕迹);
(2)求证:AECF为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】汽车由北京驶往相距840千米的沈阳,汽车的速度是每小时70千米,t小时后,汽车距沈阳s千米.
(1)求s与t的函数关系式,并写出自变量t的取值范围;
(2)经过2小时后,汽车离沈阳多少千米?
(3)经过多少小时后,汽车离沈阳还有140千米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com