精英家教网 > 初中数学 > 题目详情

【题目】已知斜三棱柱ABC﹣A1B1C1 的侧面 A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2 ,且AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成角的大小;
(2)求侧面A1ABB1与底面ABC所成二面角的大小.

【答案】
(1)解:因为侧面A1ACC1⊥底面ABC,AA1侧面A1ACC1

侧面A1ACC1底面ABC=AC

所以直线AA1在底面ABC内的射影为直线AC

故∠A1AC为侧棱AA1与底面ABC所成的角

又AA1⊥A1C,AA1=A1C,

所以∠A1AC=45°为所求.


(2)解:取AC,AB的中点分别为M,N,连结A1M,MN,NA1

由(1)知A1M⊥AC,

故A1M⊥底面ABC,A1M⊥AB

又MN∥BC,∠ABC=90°

所以MN⊥AB,又MN∩A1M=M,所以AB⊥平面A1MN

则∠A1NM即为所求二面角的平面角

在RtA1MN中,A1M= ,AC=3,MN= BC=1,∠A1MN=90°,

所以tan∠A1MN= =3,∠A1MN=arctan3.

即所求二面角的大小为arctan3.


【解析】(1)由已知得直线AA1在底面ABC内的射影为直线AC,∠A1AC为侧棱AA1与底面ABC所成的角,由此能求出侧棱A1A与底面ABC所成角的大小.(2)取AC,AB的中点分别为M,N,连结A1M,MN,NA1 , 由已知得∠A1NM即为所求二面角的平面角,由此能求出侧面A1ABB1与底面ABC所成二面角的大小.
【考点精析】解答此题的关键在于理解空间角的异面直线所成的角的相关知识,掌握已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在边长为2的菱形ABCD中, ∠ABC=120°, E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】执行如图的程序框图,则输出x的值是(
A.2016
B.1024
C.
D.﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?

非读书迷

读书迷

合计

15

45

合计


(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方程D(X) 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知椭圆C: =1(a>0)的焦点在x轴上,且椭圆C的焦距为2. (Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点R(4,0)的直线l与椭圆C交于两点P,Q,过P作PN⊥x轴且与椭圆C交于另一点N,F为椭圆C的右焦点,求证:三点N,F,Q在同一条直线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若对任意的实数a,函数f(x)=(x﹣1)lnx﹣ax+a+b有两个不同的零点,则实数b的取值范围是(
A.(﹣∞,﹣1]
B.(﹣∞,0)
C.(0,1)
D.(0,+∞)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在极坐标系中,点 ,曲线 .以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系. (Ⅰ)在直角坐标系中,求点A,B的直角坐标及曲线C的参数方程;
(Ⅱ)设点M为曲线C上的动点,求|MA|2+|MB|2取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设△ABC的内角A、B、C的对边长分别为a、b、c.设S为△ABC的面积,满足S= (a2+c2﹣b2). (Ⅰ)求B;
(Ⅱ)若b= ,求( ﹣1)a+2c的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在关于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.
(1)求k的取值范围;
(2)当方程②有两个整数根x1、x2 , k为整数,且k=m+2,n=1时,求方程②的整数根;
(3)当方程②有两个实数根x1、x2 , 满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.

查看答案和解析>>

同步练习册答案