精英家教网 > 初中数学 > 题目详情
10.下列命题的逆命题不正确的是(  )
A.菱形的四条边都相等B.两直线平行,内错角相等
C.等腰三角形的两个底角相等D.全等三角形的对应角相等

分析 分别写出各个命题的逆命题后判断即可.

解答 解:A、逆命题为:四条边都相等的四边形是菱形,正确,不符合题意;
B、逆命题为:内错角相等,两直线平行,正确,不符合题意;
C、逆命题为:两角相等的三角形是等腰三角形,正确,不符合题意;
D、逆命题为:对应角相等的三角形是全等三角形,错误,符合题意.
故选D.

点评 本题考查了命题与定理的知识,解题的关键是能够写出这些命题的逆命题,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,木条a与木条c垂直,将木条a绕点O旋转后与木条b平行,则旋转角的最小值为22°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=$\sqrt{3}$x-6$\sqrt{3}$分别与x轴、y轴相交于A、B两点.点C沿射线BA以3厘米/秒的速度运动,以点C为圆心作半径为1厘米的⊙C.点P以2厘米/秒的速度在线段OA上来回运动,运动时间为t(t>0),过点P作直线l垂直于x轴.
(1)求A,B两点的坐标;
(2)若点C与点P同时从点B,点O开始运动,求直线l与⊙C第二次相切时点P的坐标;
(3)在(2)的条件下,直线l与⊙C相交时t的范围是0≤t<2或$\frac{22}{7}$<t<$\frac{26}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列命题是真命题的是(  )
A.若x>y,则x2>y2B.若|a|=|b|,则a=bC.若a>|b|,则a2>b2D.若a<1,则a>$\frac{1}{a}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,
①如果∠1=∠2,那么根据内错角相等,两直线平行可得AB∥CD;
②如果∠DAB+∠ABC=180°,那么根据同旁内角互补,两直线平行,可得AB∥BC;
③当AB∥CD 时,根据两直线平行,同旁内角互补,得∠C+∠ABC=180°;
④当AE∥BC时,根据两直线平行,内错角相等,得∠C=∠3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在平面直角坐标系中,点A、B的坐标分别是(-2,0)、(0,4).动点P从O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C以每秒2个单位的速度在y轴上从点B出发运动到点O停止,点C停止运动时点P也随之停止运动.以CP、CO为邻边构造?PCOD,在线段OP的延长线长取点E,使得PE=2.设点P的运动时间为t秒.
(1)求证:四边形ADEC是平行四边形;
(2)以线段PE为对角线作正方形MPNE,点M、N分别在第一、四象限.
①当点M、N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;
②若点M、N中恰好只有一点落在四边形ADEC的内部(不包括边界)时,设?PCOD的面积为S,直接写出S的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若二次函数y=mx2+(m-2)x+$\frac{1}{4}m+1$的图象与x轴有交点,那么m的取值范围为m$≤\frac{1}{2}$且m≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知方程组$\left\{\begin{array}{l}{x-2y=1}\\{x+2y=n}\end{array}\right.$和$\left\{\begin{array}{l}{x+y=m}\\{2x-3y=5}\end{array}\right.$的解相同,
(1)求m,n的值.
(2)求方程组的解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,AB∥CD,∠B=53°,∠C=35°,求∠CDE和∠A的度数.

查看答案和解析>>

同步练习册答案