【题目】平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数的图象经过点C.
(1)求此反比例函数的解析式;
(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;
(3)请你画出△AD′C,并求出它的面积.
【答案】解:(1)∵点C(3,3)在反比例函数的图象上,∴。∴m=9。
∴反比例函数的解析式为。
(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,
∴AF=BE,DF=CE。
∵A(﹣4,0),B(2,0),C(3,3),
∴DF=CE=3,OA=4,OE=3,OB=2。
∴。
∴D(﹣3,3)。
∵点D′与点D关于x轴对称,∴D′(﹣3,﹣3)。
把x=﹣3代入得,y=﹣3,∴点D′在双曲线上。
(3)作图如下:
∵C(3,3),D′(﹣3,﹣3),∴点C和点D′关于原点O中心对称。
∴D′O=CO=D′C。
∴S△AD′C=2S△AOC=2×AOCE=2××4×3=12。
【解析】
试题(1)把点C(3,3)代入反比例函数,求出m,即可求出解析式。
(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,根据线段之间的数量关系进一步求出点D的坐标,再点D′与点D关于x轴对称,求出D′坐标,进而判断点D′是不是在双曲线。
(3)根据C(3,3),D′(﹣3,﹣3)得到点C和点D′关于原点O中心对称,进一步得出D′O=CO=D′C,由S△AD′C=2S△AOC=2×AOCE求出面积的值。
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,点A(a,a)在第一象限,点B(0,b),点C(3,0),
其中0<b<3,∠BAC=90°.
(1)根据题意,画出示意图;
(2)若a=2,求OB的长;
(3)已知点D在线段OB的上,若 ,四边形OCAD的面积为3,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+5的图象与反比例函数(k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式及点B坐标;
(2)在第一象限内,当一次函数y=-x+5的值大于反比例函数(k≠0)的值时,写出自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在平面直角坐标系中,A(m,0)、B(0,n),m、n满足(m-n)2+|m-|=0.C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.
(1)求∠OAB的度数;
(2)设AB=4,当点P运动时,PE的值是否变化?若变化,说明理由;若不变,请求PE的值;
(3)设AB=4,若∠OPD=45°,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:①韦达定理:设一元二次方程ax2+bx+c=0(且a≠0)中,两根有如下关系:,.
②已知p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,求 的值.
解:由p2﹣p﹣1=0及1﹣q﹣q2=0,可知p≠0,q≠0.
又∵pq≠1,∴ ;
∴1﹣q﹣q2=0可变形为的特征.
所以p与是方程x2﹣x﹣1=0的两个不相等的实数根.
则p+=1,
∴=1.
根据阅读材料所提供的方法,完成下面的解答.
已知:2m2﹣5m﹣1=0,,且m≠n.求: 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于三个数a,b,c,用max{a,b,c}表示这三个数中最大数,例如:max{-2,1,0}=1,max
解决问题:
(1)填空:max{1,2,3}=______,如果max{3,4,2x-6}=2x-6,则x的取值范围为______;
(2)如果max{2,x+2,-3x-7}=5,求x的值;
(3)如图,在同一坐标系中画出了三个一次函数的图象:y=-x-3,y=x-1和y=3x-3请观察这三个函数的图象,
①在图中画出max{-x-3,x-1,3x-3}对应的图象(加粗);
②max{-x-3,x-1,3x-3}的最小值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程
解:设x2﹣4x=y,
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)该同学第二步到第三步运用了因式分解的 (填序号).
A.提取公因式 B.平方差公式
C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后? .(填“是”或“否”)如果否,直接写出最后的结果 .
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹)
(1)求出格点△ABC(顶点均在格点上)的面积;
(2)画出格点△ABC关于直线DE对称的;
(3)在DE上画出点Q,使△QAB的周长最小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com