精英家教网 > 初中数学 > 题目详情

【题目】如图,在长方形ABCD中,AB=5AD=12,点EBC上一点,将ABE沿AE折叠,使点B落在点F处,连接CF,当CEF为直角三角形时,CF的长为________

【答案】8

【解析】

分情况讨论,当∠FEC为直角时,由折叠图形的特点推得四边形ABEF为正方形,从而求得EFEC的长,利用勾股定理可求FC的长;当∠EFC为直角时,推得AFC在一条直线上,由勾股定理求得AC,再由折叠图形的特点求出AF的长,则FC的长度可知.

如图,①当∠FEC为直角时,

∵∠BEF=90°

EB=EF

∴四边形ABEF为正方形,

BE=AB=EF=5

EC=BC-BE=12-5=7

FC=

②如图,当∠EFC为直角时

∵∠AFC=ABE=90°

AFC在同一条直线上,

AC=

AF=AB=5

CF=AC-AF=13-5=8.

故答案为:8

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】a,b是一元二次方程x(x﹣2)=x﹣2的两根,且点A(﹣a,﹣b)是反比例函数图象上的一个点,若自点A向两坐标轴作垂线,两垂线与坐标轴构成的矩形的面积是(  )

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:甲、乙两车分别从相距300kmA,B两地同时出发相向而行,甲到B地后立即返回,下图是它们离各自出发地的距离y与行驶时间x之间的函数图象.

1)求甲车离出发地的距离y与行驶时间x之间的函数关系式,并标明自变量的取值范围;

2)若已知乙车行驶的速度是40千米/小时,求出发后多长时间,两车离各自出发地的距离相等;

3)它们在行驶过程中有几次相遇.并求出每次相遇的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,ECD上一点,连接BE, ∠EBC=15°,将ΔEBC绕点C按顺时针方向旋转90°得到ΔFDC,连接EF,则∠EFD的度数为(

A. 15° B. 20° C. 25° D. 30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%15%5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示.下面有四个推断:

①年用水量不超过180m3的该市居民家庭按第一档水价交费;

②年用水量不超过240m3的该市居民家庭按第三档水价交费;

③该市居民家庭年用水量的中位数在150~180m3之间;

④该市居民家庭年用水量的众数约为110m3

其中合理的是( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为完美抛物线.已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac≠0)是完美抛物线”:

(1)试判断ac的符号;

(2)若c=-1,该二次函数图象与y轴交于点C,且SABC=1.

①求a的值;

②当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.

(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;

(2)求矩形菜园ABCD面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,点A、点B在直线l异侧,以点A为圆心,AB长为半径作弧交直线lCD两点.分别以CD为圆心,AB长为半径作弧,两弧在l下方交于点E,连结AE.

1)根据题意,利用直尺和圆规补全图形;

2)证明:l垂直平分AE.

查看答案和解析>>

同步练习册答案