精英家教网 > 初中数学 > 题目详情

【题目】在直角坐标系xoy中,对于点P(x,y) Q(x, y′) .给出如下定义:若 ,则称点Q 为点P 可控变点” . 例如:点(12)的可控变点为点(12),点(-13)的可控变点为点(-1-3.

1)点(-6-3)的可控变点坐标为________

2)若点P在函数y=-x216的图象上,其可控变点Q的纵坐标y′7,求可控变点Q的横坐标.

【答案】1)(-6,3;2)3或-.

【解析】

1)直接根据可控变点的定义直接得出答案;
2)分两种情况:若x>0, y=y'=7;若x<0, y=-y'=-7.代入y=-x216中即可求出x的值.

1∵-6<0

点(-6-3)的可控变点坐标为(-6,3);

2)解:若x>0, y=y'=7,

∴y=-x2+16=7,

解得:x=±3.

∴x=3.

x<0, y=-y'=-7,

∴y=-x2+16=-7,

解得:x=.

∴x=-.

可控变点Q的横坐标就3-.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数yx0k是常数)的图象交于Aa2),B4b)两点.

1)求反比例函数的表达式;

2)点C是第一象限内一点,连接ACBC,使ACx轴,BCy轴,连接OAOB.若点Py轴上,且OPA的面积与四边形OACB的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边AB=20,面积为320,BAD<90°,O与边AB,AD都相切,AO=10,则O的半径长等于(

A.5 B.6 C.2 D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小芸设计的过圆外一点作已知圆的切线的尺规作图过程.

已知:⊙O及⊙O外一点P

求作:⊙O的一条切线,使这条切线经过点P

作法:①连接OP,作OP的垂直平分线l,交OP于点A

②以A为圆心,AO为半径作圆,交⊙O于点M

③作直线PM,则直线PM即为⊙O的切线.

根据小芸设计的尺规作图过程,

1)用直尺和圆规,补全图形;(保留作图痕迹)

2)完成证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2bxc(a0)图象的顶点为D,其图象与x轴的交点AB的横坐标分别为-13.与y轴负半轴交于点C,在下面五个结论中:①2ab0;②abc0;③c=-3a;④只有当a 时,ABD是等腰直角三角形;⑤使ACB为等腰三角形的a值可以有三个.其中正确的结论是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.

(1)求二次函数y=ax2+2x+c的表达式;

(2)连接PO,PC,并把POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;

(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对称轴为直线x=1的抛物线y=x2﹣bx+cx轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点,且+=﹣

(1)求抛物线的解析式;

(2)抛物线顶点为D,直线BDy轴于E点;

①设点P为线段BD上一点(点P不与B、D两点重合),过点Px轴的垂线与抛物线交于点F,求BDF面积的最大值;

②在线段BD上是否存在点Q,使得∠BDC=QCE?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC内接于⊙O,且ABAC,直径ADBC于点EFOE上的一点,使CFBD

1)求证:BECE

2)若BC8AD10,求四边形BFCD的面积.

查看答案和解析>>

同步练习册答案