【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.
(1)求证:BE=EC
(2)填空:①若∠B=30°,AC=2,则DB= ;
②当∠B= 度时,以O,D,E,C为顶点的四边形是正方形.
【答案】(1)见解析;(2)①3;②45.
【解析】
(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;
(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;
②由等腰三角形的性质,得到∠ODA=∠A=45°,于是∠DOC=90°然后根据有一组邻边相等的矩形是正方形,即可得到结论.
(1)证明:连接DO.
∵∠ACB=90°,AC为直径,
∴EC为⊙O的切线;
又∵ED也为⊙O的切线,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴BE=ED,
∴BE=EC;
(2)解:①∵∠ACB=90°,∠B=30°,AC=2,
∴AB=2AC=4,
∴BC==6,
∵AC为直径,
∴∠BDC=∠ADC=90°,
由(1)得:BE=EC,
∴DE=BC=3,
故答案为:3;
②当∠B=45°时,四边形ODEC是正方形,理由如下:
∵∠ACB=90°,
∴∠A=45°,
∵OA=OD,
∴∠ADO=45°,
∴∠AOD=90°,
∴∠DOC=90°,
∵∠ODE=90°,
∴四边形DECO是矩形,
∵OD=OC,
∴矩形DECO是正方形.
故答案为:45.
科目:初中数学 来源: 题型:
【题目】在中,,点在边上运动,连接,以为一边且在的右侧作正方形.
(1)如果,如图①,试判断线段与之间的位置关系,并证明你的结论;
(2)如果,如图②,(1)中结论是否成立,说明理由.
(3)如果,如图③,且正方形的边与线段交于点,设,,,请直接写出线段的长.(用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形
(1)如图,在中,,过作一直线交于,若把分割成两个等腰三角形,则的度数是______.
(2)已知在中,,过顶点和顶点对边上一点的直线,把分割成两个等腰三角形,则的最小度数为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线与轴交于、两点,与轴交于点,已知,.
(1)求抛物线的解析式;
(2)如图2,若点是直线上方的抛物线上一动点,过点作轴的平行线交直线于点,作于点,当点的横坐标为时,求的面积;
(3)若点为抛物线上的一个动点,以点为圆心,为半径作,当在运动过程中与直线相切时,求点的坐标(请直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
(1)频数分布表中a = ,b= ,并将统计图补充完整;
(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?
(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求抛物线解析式;
(2)点C(m,0)在线段OA上(点C不与A,O点重合),CD⊥OA交AB于点D,交抛物线于点E,若DE=AD,求m的值;
(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D,B,M,N为顶点的四边形为平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degree of surprise),记作.
(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标 ,点坐标 ,惊喜四边形属于所学过的哪种特殊平行四边形? ,为 .
(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.
(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.
(1)求c的值及a,b满足的关系式;
(2)若抛物线在A和B两点间,从左到右上升,求a的取值范围;
(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).
①若m=n,求a的值;
②若m=﹣2p﹣3,n=2p+1,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com