【题目】先阅读,再解答问题.
恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当x=时,求﹣x2﹣x+2的值,为解答这题,若直接把x=代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.
方法一 将条件变形.因x=,得x﹣1=.再把所求的代数式变形为关于(x﹣1)的表达式.
原式=(x3﹣2x2﹣2x)+2
= [x2(x﹣1)﹣x(x﹣1)﹣3x]+2
= [x(x﹣1)2﹣3x]+2
=(3x﹣3x)+2
=2
方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由x﹣1=,可得x2﹣2x﹣2=0,即,x2﹣2x=2,x2=2x+2.
原式=x(2x+2)﹣x2﹣x+2
=x2+x﹣x2﹣x+2
=2
请参以上的解决问题的思路和方法,解决以下问题:
(1)若a2﹣3a+1=0,求2a3﹣5a2﹣3+的值;
(2)已知x=2+,求的值.
科目:初中数学 来源: 题型:
【题目】为配合我市“创建全国文明城市”某单位计划在一块矩形空地上修建绿色植物园(如图所示),其中边靠墙(墙长为米),另外三边用总长36米的材料围成.若米,矩形的面积为平方米.
(1)求与的函数关系式;
(2)若矩形面积为160平方米,求的长.
(3)在(2)的前提下,墙长米对的长有影响吗?请详细说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.
定义图形W的测度面积:若|x1﹣x2|的最大值为m,|y1﹣y2|的最大值为n,则S=mn为图形W的测度面积.
例如,若图形W是半径为1的⊙O,当P,Q分别是⊙O与x轴的交点时,如图1,|x1﹣x2|取得最大值,且最大值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得最大值,且最大值n=2.则图形W的测度面积S=mn=4
(1)若图形W是等腰直角三角形ABO,OA=OB=1.
①如图3,当点A,B在坐标轴上时,它的测度面积S= ;
②如图4,当AB⊥x轴时,它的测度面积S= ;
(2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的最大值为 ;
(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点为坐标原点,抛物线交轴于、两点,交轴于点,.
(1)求抛物线的解析式;
(2)如图2,为第一象限内抛物线上一点,的面积为3时,且,求点坐标;
(3)如图3,在(2)的条件下,、为抛物线上的点,且两点关于抛物线对称轴对称,过作轴垂线交过点且平行于轴的直线于,交抛物线于,延长至,连接,,当线段时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快、慢车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半.快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示.在快车从乙地返回甲地的过程中,当慢车恰好在快车前,且与快车相距80千米的路程时,慢车行驶的总的时间是_____小时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,线段AB经过⊙O的圆心,AC、BD分别与⊙O相切于点C、点D.若AC=BD=2,∠A=45°,则弧CD的长度为( )
A.B.C.πD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=﹣x2+x+b与x轴交于A、B两点,与y轴交于点C.
(1)若B点坐标为(2,0)
①求实数b的值;
②如图1,点E是抛物线在第一象限内的图象上的点,求△CBE面积的最大值及此时点E的坐标.
(2)如图2,抛物线的对称轴交x轴于点D,若抛物线上存在点P,使得P、B、C、D四点能构成平行四边形,求实数b的值.(提示:若点M,N的坐标为M(x,y),N(x,y),则线段MN的中点坐标为(,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,函数的图象G经过点,直线与y轴交于点B,与图象G交于点C.
(1)求m的值.
(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,C之间的部分与线段BA,BC围成的区域(不含边界)为W.
①当直线l过点时,直接写出区域W内的整点个数.
②若区域W内的整点不少于4个,结合函数图象,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com