【题目】在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.
定义图形W的测度面积:若|x1﹣x2|的最大值为m,|y1﹣y2|的最大值为n,则S=mn为图形W的测度面积.
例如,若图形W是半径为1的⊙O,当P,Q分别是⊙O与x轴的交点时,如图1,|x1﹣x2|取得最大值,且最大值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得最大值,且最大值n=2.则图形W的测度面积S=mn=4
(1)若图形W是等腰直角三角形ABO,OA=OB=1.
①如图3,当点A,B在坐标轴上时,它的测度面积S= ;
②如图4,当AB⊥x轴时,它的测度面积S= ;
(2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的最大值为 ;
(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.
【答案】(1)1,1;(2)2;(3)12≤S≤.
【解析】
试题分析:(1)由测度面积的定义利用它的测度面积S=|OA||OB|求解即可;
②利用等腰直角三角形的性质求出AC,AB,利用测度面积S=|AB||OC|求解即可;
(2)先确定正方形有最大测度面积S时的图形,即可利用测度面积S=|AC||BD|求解.
(3)分两种情况当A,B或B,C都在x轴上时,当顶点A,C都不在x轴上时分别求解即可.
试题解析:(1)①如图3,
∵OA=OB=1,点A,B在坐标轴上,
∴它的测度面积S=|OA||OB|=1,
故答案为:1.
②如图4,
∵AB⊥x轴,OA=OB=1.
∴AB=,OC=,
∴它的测度面积S=|AB||OC|=×=1,
故答案为:1.
(2)如图5,图形的测度面积S的值最大,
∵四边形ABCD是边长为1的正方形.
∴它的测度面积S=|AC||BD|=×=2,
故答案为:2.
(3)设矩形ABCD的边AB=4,BC=3,由已知可得,平移图形W不会改变其测度面积的大小,将矩形ABCD的其中一个顶点B平移至x轴上,
当A,B或B,C都在x轴上时,
如图6,图7,
矩形ABCD的测度面积S就是矩形ABCD的面积,此时S=12.
当顶点A,C都不在x轴上时,如图8,过点A作直线AH⊥x轴于点E,过C点作CF⊥x轴于点F,过点D作直线GH∥x轴,分别交AE,CF于点H,G,则可得四边形EFGH是矩形,
当点P,Q与点A,C重合时,|x1﹣x2|的最大值为m=EF,|y1﹣y2|的最大值为n=GF.
图形W的测度面积S=EFGF,
∵∠ABC+∠CBF=90°,∠ABC+∠BAE=90°,
∴∠CBF=∠BAE,
∵∠AEB=∠BFC=90°,
∴△AEB∽△BFC,
∴,
设AE=4a,EB=4b,(a>0,b>0),则BF=3a,FC=3b,
在RT△AEB中,AE2+BE2=AB2,
∴16a2+16b2=16,即a2+b2=1,
∵b>0,
∴,
在△ABE和△CDG中,
∴△ABE≌△CDG(AAS)
∴CG=AE=4a,
∴EF=EB+BF=4b+3a,GF=FC+CG=3b+4a,
∴图形W的测度面积S=EFGF=(4b+3a)(3b+4a)
=12a2+12b2+25a=12+25=12+25,
当时,即a=时,测度面积S取得最大值12+25×=,
∵a>0,b>0,
∴,
∴S>12,
综上所述:测度面积S的取值范围为12≤S≤.
科目:初中数学 来源: 题型:
【题目】把一张矩形纸片ABCD按如图方式折叠,使顶点B落在边AD上(记为点B′),点A落在点A′处,折痕分别与边AD、BC交于点E、F.
(1)试在图中连接BE,求证:四边形BFB′E是菱形;
(2)若AB=8,BC=16,求线段BF长能取到的整数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是( )
A. 用两个钉子就可以把木条固定在墙上
B. 把弯曲的公路改直,就能缩短路程
C. 利用圆规可以比较两条线段的大小关系
D. 植树时,只要定出两棵树的位置,就能确定同一行树所在的直线。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需成本1700元 ;若购进甲种3株,乙种1株,则共需成本1500元,
(1)求甲乙两种君子兰每株成本多少元?
(2)该种植基地决定在成本不超过30000元的前提下购进甲乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由a+3=b变为2(a+3)-5=2b-5,其过程中所用等式的性质及顺序是( )
A. 先用等式的性质1,再用等式的性质2
B. 先用等式的性质2,再用等式的性质1
C. 仅用了等式的性质1
D. 仅用了等式的性质2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com