【题目】在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF.
(1)如果AB=AC,如图1,且点D在线段BC上运动,判断∠BAD ∠CAF(填“=”或“≠”),并证明:CF⊥BD
(2)如果AB≠AC,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;
(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC=4,CD=2,求线段CP的长.
【答案】(1)=,见解析;(2)AB≠AC时,CF⊥BD的结论成立,见解析;(3)线段CP的长为1或3
【解析】
(1)证出∠BAC=∠DAF=90°,得出∠BAD=∠CAF;可证△DAB≌△FAC(SAS),得∠ACF=∠ABD=45°,得出∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证△GAD≌△CAF(SAS),得出∠ACF=∠AGD=45°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)分两种情况去解答.①点D在线段BC上运动,求出AQ=CQ=4.即DQ=4﹣2=2,易证△AQD∽△DCP,得出对应边成比例,即可得出CP=1;②点D在线段BC延长线上运动时,同理得出CP=3.
(1)①解:∠BAD=∠CAF,理由如下:
∵四边形ADEF是正方形
∴∠DAF=90°,AD=AF
∵AB=AC,∠BAC=90°
∴∠BAD+∠DAC=∠CAF+∠DAC=90°
∴∠BAD=∠CAF
故答案为:=
②在△BAD和△CAF中,
∴△BAD≌△CAF(SAS)
∴CF=BD
∴∠B=∠ACF
∴∠B+∠BCA=90°
∴∠BCA+∠ACF=90°
∴∠BCF=90°
∴CF⊥BD
(2)如图2所示:AB≠AC时,CF⊥BD的结论成立.理由如下:
过点A作GA⊥AC交BC于点G
则∠GAD=∠CAF=90°+∠CAD
∵∠ACB=45°
∴∠AGD=45°
∴AC=AG
在△GAD和△CAF中,,
∴△GAD≌△CAF(SAS),
∴∠ACF=∠AGD=45°,
∴∠BCF=∠ACB+∠ACF=90°
∴CF⊥BD.
(3)过点A作AQ⊥BC交CB的延长线于点Q,
①点D在线段BC上运动时,如图3所示:
∵∠BCA=45°
∴△ACQ是等腰直角三角形
∴AQ=CQ=AC=4
∴DQ=CQ﹣CD=4﹣2=2
∵AQ⊥BC,∠ADE=90°
∴∠DAQ+∠ADQ=∠ADQ+∠PDC=90°
∴∠DAQ=∠PDC
∵∠AQD=∠DCP=90°
∴△DCP∽△AQD
∴=,即=
解得:CP=1
②点D在线段BC延长线上运动时,如图4所示:
∵∠BCA=45°
∴AQ=CQ=4
∴DQ=AQ+CD=4+2=6
∵AQ⊥BC于Q
∴∠Q=∠FAD=90°
∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D
∴∠ADQ=∠AFC′
则△AQD∽△AC′F
∴CF⊥BD
∴△AQD∽△DCP
∴=,即=
解得:CP=3
综上所述,线段CP的长为1或3.
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列结论错误的是( )
A.ac<0
B.当x>1时,y的值随x的增大而减小
C.3是方程ax2+(b﹣1)x+c=0的一个根
D.当﹣1<x<3时,ax2+(b﹣1)x+c>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+b与y轴交于点A(0,4),与函数y=(k>0,x<0)的图象交于点C,以AC为对角线作矩形ABCD,使顶点B,D落在x轴上(点D在点B的右边),BD与AC交于点E.
(1)求b和k的值;
(2)求顶点B,D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有本,最多的有本,并根据调查结果绘制了不完整的图表,如下所示:
本数(本) | 频数(人数) | 频率 |
合计 |
()统计图表中的__________,__________,__________.
()请将频数分布直方图补充完整.
()求所有被调查学生课外阅读的平均本数.
()若该校八年级共有名学生,请你估计该校八年级学生课外阅读本及以上的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,△OAB的边OB在x轴上,过点A的反比例函数y=的图象交AB于点C,且AC:CB=2:1,S△OAC=,则k的值为( )
A.B.C.2D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为5的正方形中,以B为圆心,BA为半径作弧AC,F为弧AC上一动点,过点F作⊙B的切线交AD于点P,交DC于点Q.
(1)求证:PQ=AP+CQ;
(2)分别延长PQ、BC,延长线相交于点M,如果AP=2,求BM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,过原点的抛物线与轴交于另一点,抛物线顶点的坐标为,其对称轴交轴于点.
(1)求抛物线的解析式;
(2)如图2,点为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使面积最大时点的坐标;
(3)在对称轴上是否存在点,使得点关于直线的对称点满足以点、、、为顶点的四边形为菱形.若存在,请求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com