精英家教网 > 初中数学 > 题目详情

【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;
②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;
③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.
其中合理的是(
A.①
B.②
C.①②
D.①③

【答案】B
【解析】解:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以此时“钉尖向上”的可能性是:308÷500=0.616,但“钉尖向上”的概率不一定是0.616,故①错误, 随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,
若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率可能是0.620,但不一定是0.620,故③错误,
故选B.
根据图形和各个小题的说法可以判断是否正确,从而可以解答本题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两地之间有一条笔直的公路,小明从甲地出发沿公路步行前往乙地,同时小亮从乙地出发沿公路骑车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为(m),小亮与甲地的距离为(m),小明与小亮之间的距离为(m),小明行走的时间为(min).之间的函数图象如图①,之间的函数图象(部分)如图②.

(1)求小亮从乙地到甲地过程中(m)(min)之间的函数表达式;

(2)求小亮从甲地返回到与小明相遇的过程中(m)( min)之间的函数表达式;

(3)在图②中,补全整个过程中(m)(min)之间的函数图象,并确定的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南水北调工程中线自201412月正式通水以来,沿线多座大中城市受益,河南、河北、北京及天津四个省(市)的水资源紧张态势得到缓解,有效促进了地下水资源的涵养和恢复.若与上年同期相比,北京地下水的水位下降记为负,回升记为正,记录从2013年底以来,北京地下水水位的变化得到下表:

时间

2013年底

2014年底

2015年底

2016年底

2017年底

20189月底

地下水位与上年同比变化量(单位:

-0.25

-1.14

-0.09

+0.52

+0.26

+2.12

以下关于2013年以来北京地下水水位的说法不正确的是(

A. 2014年底开始,北京地下水水位的下降趋势得到缓解

B. 2015年底到2016年底,北京地下水水位首次回升

C. 2013年以来,每年年底的地下水位与上年同比的回升量最大的是2018

D. 20189月底的地下水位低于2012年底的地下水水位

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.

(1)当∠APB=28°时,求∠B和 的度数;
(2)求证:AC=AB.
(3)在点P的运动过程中
①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;
②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题10分) 如图1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩 形,这样的矩形称为叠合矩形.


(1)将□ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段;S矩形AEFG:S□ABCD=
(2)ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.
(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形.请你帮助画出叠合正方形的示意图,并求出AD,BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,﹣3),C(4,﹣2).

(1)①画出△ABC关于x轴的对称图形△A1B1C1;②画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2

(2)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,操场的两端为半圆形,中间是一个长方形. 已知半圆的半径为r,直跑道的长为l,请用关于rl的多项式表示这个操场的面积. 这个多项式能分解因式吗?若能,请把它分解因式,并计算当r40ml30πm时操场的面积(结果保留π);若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】⑴如图1,点M、N分别在∠AOB的边OA、OB上,且OM=ON,过点M、N分别作MPOA、NPOB,MP、NP交于P,E、F分别为线段MP、NP上的点,且∠EOF=AOB,延长PMS,使MS=NF,连接OS,则∠EOF与∠EOS的数量关系为 ,线段NF、EM、EF的数量关系为

⑵如图2,点M、N分别在∠AOB的边OA、OB上,且OM=ON,, E、F分别为线段MP、NP上的点,且∠EOF=AOB,⑴中的线段NF、EM、EF的数量关系是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明。

⑶如图3,点M、N分别在∠AOB的边OA、OB上,且OM=ON,, E、F分别为线段PM、NP延长线上的点,且∠EOF=AOB,⑴中的线段NF、EM、EF的数量关系是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下

组别

睡眠时间x(小时)

A

4.5≤x<5.5

B

5.5≤x<6.5

C

6.5≤x<7.5

D

7.5≤x<8.5

E

8.5≤x<9.5

根据图表提供的信息,回答下列问题:
(Ⅰ)直接写出统计图中a的值
(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?

查看答案和解析>>

同步练习册答案