【题目】如图1,矩形ABCD的边AD在y轴上,抛物线经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上。
(1)请直接写出下列各点的坐标:
A ,B ,C ,D ;
(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2。
①当线段PH=2GH时,求点P的坐标;
②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值。
图1 图2 备用图
【答案】(1)A(0,3),B(4,3),C(4,-1),D( 0,- 1):(2)①当点P的坐标为(3,0)或(-1,8);
②
【解析】试题分析:(1)令x=0,得到点A的坐标,再根据点A的纵坐标得到点B的坐标,根据抛物线的顶点式和矩形的性质可得C.D的坐标;
(2)①根据待定系数法可得直线BD的解析式,设点P的坐标为(x,x2﹣4x+3),则点H(x,x﹣1),点G(x,3).分三种情况:1°当x≥1且x≠4时;2°当0<x<1时;3°当x<0时;三种情况讨论可得点P的坐标;
②根据相似三角形的性质可得,再根据二次函数的增减性可得△KPH面积的最大值.
试题解析:解:(1)A(0,3),B(4,3),C(4,﹣1),D(0,﹣1).
(2)①设直线BD的解析式为y=kx+b(k≠0),由于直线BD经过D(0,﹣1),B(4,3),∴,解得: ,∴直线BD的解析式为y=x﹣1.
设点P的坐标为(x,x2﹣4x+3),则点H(x,x﹣1),点G(x,3).
1°当x≥1且x≠4时,点G在PH的延长线上,如图①.
∵PH=2GH,∴(x﹣1)﹣(x2﹣4x+3)=2[3﹣(x﹣1)],∴x2﹣7x+12=0,解得x1=3,x2=4.
当x2=4时,点P,H,G重合于点B,舍去,∴x=3,∴此时点P的坐标为(3,0).
2°当0<x<1时,点G在PH的反向延长线上,如图②,PH=2GH不成立.
3°当x<0时,点G在线段PH上,如图③.
∵PH=2GH,∴(x2﹣4x+3)﹣(x﹣1)=2[3﹣(x﹣1)],∴x2﹣3x﹣4=0,解得x1=﹣1,x2=4(舍去),∴x=﹣1.此时点P的坐标为(﹣1,8).
综上所述可知,点P的坐标为(3,0)或(﹣1,8).
②如图④,令x2﹣4x+3=0,得x1=1,x2=3,∴E(1,0),F(3,0),∴EF=2,∴S△AEF=EFOA=3.
∵△KPH∽△AEF,∴,∴.
∵1<x<4,∴当时,s△KPH的最大值为.
科目:初中数学 来源: 题型:
【题目】已知数轴上三点M,O,N对应的数分别为-1,0,3,点P为数轴上任意一点,其对应的数为x.
(1)MN的长为 ;
(2)如果点P到点M、点N的距离相等,那么x的值是 ;
(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.
(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若a,b,c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:
①以a2,b2,c2的长为边的三条线段能组成一个三角形
②以, , 的长为边的三条线段能组成一个三角形
③以a+b,c+h,h的长为边的三条线段能组成直角三角形
④以, , 的长为边的三条线段能组成直角三角形
其中所有正确结论的序号为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=x2+bx﹣与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.
(1)试求出二次函数的表达式和点B的坐标;
(2)当点P在线段AO(点P不与A、O重合)运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.
(1)若∠AOB=60,OM=4,OQ=1,求证:CN⊥OB.
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问: 的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,O为坐标原点,已知A(-1,1),在坐标轴上确定点P,使△AOP为等腰三角形,则符合条件的点P的个数共有( )
A. 10个 B. 8个 C. 4个 D. 6个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角三角形ABC中,∠ACB=90°,AC=4cm,BC=3cm,将三角形ABC沿AB方向向右平移得到三角形DEF,若AE=8cm,DB=2cm.
(1)求三角形ABC向右平移的距离AD的长;
(2)求四边形AEFC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,AB=4,E是AC的中点,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,当点D运动时,则AF的最小值为( )
A.2B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com