精英家教网 > 初中数学 > 题目详情
4.已知关于x的方程x2+(2k-3)x+k2-3=0有两个实数根x1,x2,且x1+x2=$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$,求k的值.

分析 方程的两根为x1,x2,根据根与系数的关系得到x1+x2=-(2k-3),x1•x2=k2-2,根据题意得出方程求得方程解即可.

解答 解:∵关于x的方程x2+(2k-3)x+k2-3=0有两个实数根x1,x2
∴x1+x2=-(2k-3),x1•x2=k2-3,
∵x1+x2=$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$,
∴k2-3=1,
则k=±2.

点评 此题考查根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的两个实根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.25x2-(x2+4)2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图:在△ABC中,AD、BE、CF是△ABC的高,交点为H,则△AHC的三边上高分别为HE,AF,CD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.
(1)求证:∠ADP=∠EPB;
(2)求∠CBE的度数;
(3)当点P是AB的中点且AB=2,则BF的长为$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是(  )
A.正方形B.矩形C.菱形D.都有可能

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.随着车辆的增加,交通违规的现象越来越严重,交警对人民路某雷达测速区检测到的一组汽车的时速数据进行整理(速度在30-40含起点值30,不含终点值40),得到其频数及频率如表:
数据段频数频率
30-40100.05
40-5036c
50-60a0.39
60-70bd
70-80200.10
总计2001
(1)表中a、b、c、d分别为:a=78; b=56; c=0.18; d=0.28
(2)补全频数分布直方图;
(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,过点C作CD⊥AB,取AC的中点E,连接DE,则△DEC的周长是(  )
A.2.4B.4.4C.6.4D.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解方程:9x2-6x+1=4(2x+3)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在△ABC中,cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,我们称为余弦定理,请用余弦定理完成下面的问题.请用余弦定理完成下面的问题:
(1)如图,已知△DEF,∠E=60°,DE=4,DF=$\sqrt{13}$,求EF的长度;
(2)通过合理的构造,试求cos105°.

查看答案和解析>>

同步练习册答案