精英家教网 > 初中数学 > 题目详情
2.甲、乙两车分别从M,N两地沿同一公路相向匀速行驶,两车分别抵达N,M两地后即停止行驶.已知乙车比甲车提前出发,设甲、乙两车之间的路程S(km),乙行驶的时间为t(h),S与t的函数关系如图所示.有下列说法:
①M、N两地之间公路路程是300km,两车相遇时甲车恰好行驶3小时;
②甲车速度是80km/h,乙车比甲车提前1.5个小时出发;
③当t=5(h)时,甲车抵达N地,此时乙车离M地还有20km的路程;
④a=$\frac{21}{4}$,b=280,图中P,Q所在直线与横轴的交点恰($\frac{3}{2}$,0).
其中正确的是(  )
A.①②B.②③C.③④D.②④

分析 ①由点(0,300),可知M、N两地之间公路路程是300km;由点(3,0)可知两车相遇时乙车恰好行驶3小时,乙比甲早出发,即①不成立;
②由速度=路程÷时间,结合点(1.5,210)可得出乙车的速度,再结合点(3,0)可知甲车的速度,由图象的转折点横坐标为1.5,可知②成立;
③由时间=路程÷速度,可知当t=5(h)时.乙车抵达M地,即③不成立;
④由路程=速度×时间可得出b的值,再由时间=路程÷速度可得出a的值,设出P,Q所在直线解析式为S=kt+b,由待定系数法可求出该解析式,代入S=0,即可得知④成立.综上可得出结论.

解答 解:①当t=0时,S=300,可知M、N两地之间公路路程是300km;
当t=3时,S=0,可知两车相遇时乙车恰好行驶3小时,
由乙车比甲车提前出发可知①不正确;
②乙车的速度为(300-210)÷1.5=60km/h,
甲车的速度为210÷(3-1.5)-60=80km/h.
由图象转折点在1.5小时处,故乙车比甲车提前1.5个小时出发,②正确;
③∵乙车到M地的时间为300÷60=5(h),
∴当t=5(h)时,乙车抵达M地,③不正确;
④乙到达M地时,甲车行驶的路程b=80×(5-1.5)=280,
甲车到达N地的时间a=300÷80+1.5=$\frac{21}{4}$.
设P,Q所在直线解析式为S=kt+b,
将点P(5,280)、Q($\frac{21}{4}$,300)代入,得
$\left\{\begin{array}{l}{280=5k+b}\\{300=\frac{21}{4}k+b}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=80}\\{b=-120}\end{array}\right.$.
故P,Q所在直线解析式为S=80t-120,
令S=0,则有80t-120=0,解得t=$\frac{3}{2}$,
故图中P,Q所在直线与横轴的交点恰($\frac{3}{2}$,0),即④成立.
故选D.

点评 本题考查了一次函数的应用、待定系数法求函数解析式,解题的关键是结合图象以及各数量关系逐条分析4个结论.本题属于基础题,难度不大,其实在解决该题时,只要判断出①③不正确,即可得出结论了,④不用再去分析.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,抛物线y=-$\frac{1}{8}$x2+mx+n经过△ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式及点C的坐标;
(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;
(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.在同一平面直角坐标系中,如果两个二次函数y1=a1(x+h12+k1与y2=a2(x+h22+k2的图象的形状相同,并且对称轴关于y轴对称,那么我们称这两个二次函数互为梦函数.如二次函数y=(x+1)2-1与y=(x-1)2+3互为梦函数,写出二次函数y=2(x+3)2+2的其中一个梦函数y=2(x-3)2+2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,AD平分∠BAC,点E在射线AD上,∠BED=∠CED,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,直线MA∥NB,∠A=68°,∠B=40°,则∠P=28°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.一根长竹签切成四段,分别为3cm、5cm、7cm、9cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若$\left\{\begin{array}{l}x+2y=2015\\ 2x+y=4024\end{array}\right.$,则x+y=2013.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.探究:如图①,△ABC是等边三角形,在边AB、BC的延长线上截取BM=CN,连结MC、AN,延长MC交AN于点P.
(1)求证:△ACN≌△CBM;
(2)∠CPN=120°.
应用:将图①的△ABC分别改为正方形ABCD和正五边形ABCDE,如图②、③,在边AB、BC的延长线上截取BM=CN,连结MC、DN,延长MC交DN于点P,则图②中∠CPN=90°;图③中∠CPN=72°.
拓展:若将图①的△ABC改为正n边形,其它条件不变,则∠CPN=$\frac{360}{n}$°(用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作$\widehat{BC}$,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是(  )
A.$\frac{5}{3}π-2\sqrt{3}$B.$\frac{5}{3}π+2\sqrt{3}$C.2$\sqrt{3}-\frac{5}{3}π$D.$\sqrt{3}+\frac{5}{3}π$

查看答案和解析>>

同步练习册答案