【题目】如图,在正方形ABCD中,E是边AD上一点,将△ABE绕点A按逆时针方向旋转90°到△ADF的位置.已知AF=5,BE=13.
(1)求DE的长度;
(2)BE与DF是否垂直?说明你的理由.
【答案】(1)DE=7;(2)BE与DF垂直.理由见解析.
【解析】
(1)根据旋转的性质得DF=BE=13,AE=AF=5,再在Rt△ADF中利用勾股定理可计算出AD=12,即可求出DE的长度;
(2)延长BE交DF于H,根据旋转的性质得∠ABE=∠ADF,根据三角形内角和定理可计算出∠FHB=90°,即可判断BH⊥DF.
解:(1)∵△ABE绕点A按逆时针方向旋转90°得到△ADF,
∴DF=BE=13,AE=AF=5,
在Rt△ADF中,∵AF=5,DF=13,
∴AD==12,
∴DE=AD﹣AE=12﹣5=7;
(2)BE与DF垂直.理由如下:
延长BE交DF于H,
∵△ABE绕点A按逆时针方向旋转90°得到△ADF,
∴∠ABE=∠ADF,
∵∠ADF+∠F=90°,
∴∠ABE+∠F=90°,
∴∠FHB=90°,
∴BH⊥DF.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中, O为BD中点,以BC为边向正方形内作等边BCE,连接并延长AE交CD于F,连接BD分别交CE,AF于G ,H ,下列结论:①∠CEH=45°;②GF//DE;③2OH+DH=BD;④BG=DG;⑤△BEC : S△BGC=.其中正确的结论是( )
A.①②⑤B.①②④C.①②D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应垃圾分类处理,改善生态环境,某小区将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C
(1)小明将垃圾分装在三个袋中,任意投放,用画树状图或列表的方法求把三个袋子都放错位置的概率是多少?
(2)某学习小组为了了解居民生活垃圾分类投放的情况,现随机抽取了某天三类垃圾箱中总共100吨的生活垃圾,数据统计如表(单位:吨):
A | B | C | |
a | 40 | 10 | 10 |
b | 3 | 24 | 3 |
c | 2 | 2 | 6 |
调查发现,在“可回收垃圾”中塑料类垃圾占10%,每回收1吨塑料类垃圾可获得0.7吨二级原料,某城市每天大约产生200吨生活垃圾假设该城市每天处理投放正确的垃圾,每天大概可回收多少吨塑料类垃圾的二级原料?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣3与x轴交于A,B两点(A点在B点左侧),A(﹣1,0),B(3,0),直线l与抛物线交于A,C两点,其中C点的横坐标为2.
(1)求抛物线的函数解析式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G是抛物线上的动点,在x轴上是否存在点F,使A,C,F,G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=(x﹣1)2+k的图象与x轴交于点A(﹣1,0),C两点,与y轴交于点B.
(1)求抛物线解析式及B点坐标;
(2)在抛物线上是否存在点P使S△PAC=S△ABC?若存在,求出P点坐标,若不存在,请说明理由;
(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形,若存在,求出Q点坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).
(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;
(2)在整个运动过程中,问所形成的△PEF是否存在最大面积;如果存在请求出,如果不存在说明理由.
(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴的正半轴和y轴的负半轴上,二次函数y=x2+bx+c的图象经过B、C两点.
(1)求该二次函数的解析式;
(2)结合函数的图象直接写出不等式x2+bx+c>0的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一张长20cm、宽12cm的矩形纸板,将纸板四个角各剪去一个边长为cm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.
(1)这个无盖纸盒的长为 cm,宽为 cm;(用含x的式子表示)
(2)若要制成一个底面积是180m2的无盖长方体纸盒,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(–4,n),B(2,–4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求不等式的解集(请直接写出答案).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com