分析 根据旋转的性质得AC=AC′,∠C′AC=∠B′AB,根据平行线的性质由C′C∥AB得到∠C′CA=∠CAB=65°,根据等腰三角形的性质得∠AC′C=∠C′CA=65°,然后根据三角形内角和定理得∠C′AC=50°,所以∠B′AB=50°.
解答 解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,
∴AC=AC′,∠C′AC=∠B′AB,
∵C′C∥AB,
∴∠C′CA=∠CAB=65°,
∵AC=AC′,
∴∠AC′C=∠C′CA=65°,
∴∠C′AC=180°-2×65°=50°,
∴∠B′AB=50°.
故答案为:50°.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a2-b2=(a-b)2 | B. | (a+b)2=a2+2ab+b2 | C. | (a-b)2=a2-2ab+b2 | D. | a2-b2=(a+b)(a-b) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{9}{2}$ | B. | $\frac{27}{4}$ | C. | $\frac{24}{5}$ | D. | 12 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 27$\sqrt{2}$海里 | B. | 18$\sqrt{3}$海里 | C. | 27$\sqrt{3}$海里 | D. | 18$\sqrt{2}$海里 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 若x>y,则x2>y2 | |
| B. | 若(x1,y1)、(x2,y2)是函数$y=\frac{2}{x}$图象上的两点,且x1<x2,则y1>y2 | |
| C. | 有两角及一边对应相等的两个三角形全等 | |
| D. | 对角线互相垂直的平行四边形是正方形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com