精英家教网 > 初中数学 > 题目详情

【题目】如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°

(1)求证:AG=FG;

(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.

【答案】(1)证明见解析;(2)2

【解析】

试题分析:(1)过C点作CH⊥BF于H点,根据已知条件可证明△AGB≌△BHC,所以AG=BH,BG=CH,又因为BH=BG+GH,所以可得BH=HF+GH=FG,进而证明AG=FG;

(2)过D作DQ⊥MF交MF延长线于Q,根据全等三角形的性质和等腰三角形的性质即可求出FD的长.

试题解析:(1)过C点作CH⊥BF于H点,

∵∠CFB=45°

∴CH=HF,

∵∠ABG+∠BAG=90°,∠FBE+∠ABG=90°

∴∠BAG=∠FBE,

∵AG⊥BF,CH⊥BF,

∴∠AGB=∠BHC=90°,

在△AGB和△BHC中,

∵∠AGB=∠BHC,∠BAG=∠HBC,AB=BC,

∴△AGB≌△BHC,

∴AG=BH,BG=CH,

∵BH=BG+GH,

∴BH=HF+GH=FG,

∴AG=FG;

(2)∵CH⊥GF,

∴CH∥GM,

∵C为FM的中点,

∴CH=GM,

∴BG=GM,

∵BM=10,

∴BG=2,GM=4

∴AG=4,AB=10,

∴HF=2

∴CF=2×=2

∴CM=2

过B点作BK⊥CM于K,

∵CK=CM=CF=

∴BK=3

过D作DQ⊥MF交MF延长线于Q,

∴△BKC≌△CQD

∴CQ=BK=3

DQ=CK=

∴QF=3-2=

∴DF==2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE= ,则∠CDE+∠ACD=(
A.60°
B.75°
C.90°
D.105°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题

(1)为了迎接新年的到来,学校准备向每位同学赠送一张贺年卡,甲、乙两家都可以印制这种贺年卡,甲厂要收制版费600元,且印制每张0.35元,乙厂要收制版费500元,且印制每张0.40元,两厂制作的贺年卡的质量一样.

①当印制多少张时,甲、乙两厂的收费一样?

②如果要印制2500张,选择哪一家合算?

③根据你的计算和判断,你认为印制多少张时,选择甲厂更合算?印制多少张时,选择乙厂更合算?

(2)我校每天中午总是在规定时间打开学校大门,七年级新生小明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9千米的速度到校,结果校门刚好已开了6分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米?

根据下面思路,请完成此题的解答过程:

解:设星期三中午小明从家骑自行车准时到达学校门口所用时间为t小时,则星期一中午小明从家骑自行车到达学校门口所用时间为   小时,星期二中午小明从家骑自行车到达学校门口所用时间为   小时,由题意列方程得:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某开发公司生产的960件新产品,需要精加工后,才能投放市场。现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元。

(1)求甲、乙两个工厂每天各能加工多少件新产品。

(2)公司制定产品加工方案如下:可以由每个厂家单独完成;也可以由两个厂家同时合作完成。在加工过程中,公司需派一名工程师每天到厂进行技术指导,并负担每天5元的误餐补助费。 请你帮助公司选择一种既省时又省钱的加工方案,并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BD平分∠ABCA=2C

1)若∠C=38°,则∠ABD=      

2)求证:BC=AB+AD

3)求证:BC2=AB2+ABAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】填空或填写理由.

(1)如图甲,∵∠   =   (已知);

ABCD(   

(2)如图乙,已知直线ab,3=80°,求∠1,2的度数.

解:∵ab,(   

∴∠1=4(   

又∵∠3=4(   

3=80°(已知)

∴∠1=(   )(等量代换)

又∵∠2+3=180°

∴∠2=(   )(等式的性质)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC的边AB上一点,CEAB,DEAC于点F,若FA=FC.

(1)求证:四边形ADCE是平行四边形;

(2)AEEC,EF=EC=1,求四边形ADCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】11·湖州)(本小题10分)

如图,已知EF分别是□ABCD的边BCAD上的点,且BE=DF

求证:四边形AECF是平行四边形;

BC=10∠BAC=90°,且四边形AECF是菱形,求BE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的圆柱形容器的容积为81升,它的底面直径是高的2倍.(π3)

(1)这个圆柱形容器的底面直径为多少分米?

(2)若这个圆柱形容器的两个底面与侧面都是用铁皮制作的,则制作这个圆柱形容器需要铁皮多少平方分米?(不计损耗)

查看答案和解析>>

同步练习册答案