已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.
(1)求证:∠DAC=∠DBA;
(2)求证:P是线段AF的中点;
(3)连接CD,若CD﹦3,BD﹦4,求⊙O的半径和DE的长.
![]()
(1)证明:∵BD平分∠CBA,
∴∠CBD=∠DBA,
∵∠DAC与∠CBD都是弧CD所对的圆周角,
∴∠DAC=∠CBD,
∴∠DAC=∠DBA,
∵AB是⊙O的直径,DE⊥AB,
∴∠ADB=∠AED=90°,
∴∠ADE+∠DAE=90°,∠DBA+∠DAE=90°,
∴∠ADE=∠DBA,
∴∠DAC=∠ADE,
∴∠DAC=∠DBA;
(2)证明:∵AB为直径,
∴∠ADB=90°,
∵DE⊥AB于E,
∴∠DEB=90°,
∴∠ADE+∠EDB=∠ABD+∠EDB=90°,
∴∠ADE=∠ABD=∠DAP,
∴PD=PA,
∵∠DFA+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,
∴∠PDF=∠PFD,
∴PD=PF,
∴PA=PF,即P是线段AF的中点;
(3)解:连接CD,
∵∠CBD=∠DBA,
∴CD=AD,
∵CD﹦3,∴AD=3,
∵∠ADB=90°,
∴AB=5,
故⊙O的半径为2.5,
∵DE×AB=AD×BD,
∴5DE=3×4,
∴DE=2.4.
即DE的长为2.4.
![]()
科目:初中数学 来源: 题型:
某批发商以40元/千克的成本价购入了某产品700千克,据市场预测,该产品的销售价y(元/千克)与保存时间x(天)的函数关系为y=50+2x,但保存这批产品平均每天将损耗15千克,且最多保存15天.另外,批发商每天保存该批产品的费用为50元.
(1)若批发商在保存该产品5天时一次性卖出,则可获利 9250 元.
(2)如果批发商希望通过这批产品卖出获利10000元,则批发商应在保存该产品多少天时一次性卖出?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在梯形ABCD中,
AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离是cm.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+
﹣
=0的两个实数根.
(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么▱ABCD的周长是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是( )
![]()
A.4.75 B.4.8 C.5 D.4![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com