精英家教网 > 初中数学 > 题目详情

【题目】问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.

(1)丽丽同学看过图形后立即口答出:∠APC=85°,请你补全她的推理依据.
如图2,过点P作PE∥AB,

∵AB∥CD,∴PE∥CD. (
∴∠A+∠APE=180°.
∠C+∠CPE=180°. (
∵∠PAB=140°,∠PCD=135°,
∴∠APE=40°,∠CPE=45°
∴∠APC=∠APE+∠CPE=85°.(
问题迁移:
(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有何数量关系?请说明理由.

(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与∠α、∠β之间的数量关系.

【答案】
(1)平行于同一条直线的两条直线平行,两直线平行,同旁内角互补,等量代换
(2)解:∠CPD=∠α+∠β,理由如下:

如图3所示,过P作PE∥AD交CD于E,

∵AD∥BC,

∴AD∥PE∥BC,

∴∠α=∠DPE,∠β=∠CPE,

∴∠CPD=∠DPE+∠CPE=∠α+∠β


(3)解:当P在BA延长线时,如图4所示:

过P作PE∥AD交CD于E,

同(2)可知:∠α=∠DPE,∠β=∠CPE,

∴∠CPD=∠β﹣∠α;

当P在AB延长线时,如图5所示:

同(2)可知:∠α=∠DPE,∠β=∠CPE,

∴∠CPD=∠α﹣∠β.


【解析】(1)平行线间出现折线过点P作PE∥AB,

如图2所示:

∵AB∥CD,

∴PE∥CD.(平行于同一条直线的两条直线平行)

∴∠A+∠APE=180°.

∠C+∠CPE=180°.(两直线平行同旁内角互补)

∵∠PAB=130°,∠PCD=120°,

∴∠APE=50°,∠CPE=60°

∴∠APC=∠APE+∠CPE=110°.(等量代换)

所以答案是:平行于同一条直线的两条直线平行|两直线平行,同旁内角互补|等量代换;
(2)类比第1题,过平行线间的折线折点,构造出内错角,转化∠α、∠β,可得结论;
(3)类比第1题,过平行线间的折线折点,构造出内错角,转化∠α、∠β,须分类讨论,可得结论.

【考点精析】本题主要考查了平行线的判定与性质的相关知识点,需要掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线 与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且 ,则k的值是( )

A.4
B.2
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.
(1)李明步行的速度(单位:米/分)是多少?
(2)李明能否在联欢会开始前赶到学校?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(
A.﹣a2?(﹣a3)=a6
B.(a23=a6
C.( 2=﹣a2﹣2a﹣1
D.(2a+1)0=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】太阳的半径约是69000千米,用科学记数法表示约是千米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC≌△AEF,点F在BC上,下列结论: ①AC=AF ②∠FAB=∠EAB ③∠FAC=∠BAE ④若∠C=50°,则∠BFE=80°
其中错误结论有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】x2-5x-6=0的两根为( )

A.6-1B.-61C.-2-3D.23

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图坐标平面内,A(﹣2,0),B(0,﹣4),AB⊥AC,AB=AC,△ABC经过平移后,得△A′B′C′,B点的对应点B′(6,0),A,C对应点分别为A′,C′.

(1)求C点坐标;
(2)直接写出A′,C′坐标,并在图(2)中画出△A′B′C′;
(3)P为y轴负半轴一动点,以A′P为直角边以A’为直角顶点,在A′P右侧作等腰直角三角形A′PD.①试证明点D一定在x轴上;②若OP=3,求D点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE的周长是cm.

查看答案和解析>>

同步练习册答案