精英家教网 > 初中数学 > 题目详情
3.已知13x2-6xy+y2-4x+1=0,求:(x+y)2013•x2012的值.

分析 根据非负数的性质求出x、y,再利用积的乘方公式化简即可.

解答 解:∵13x2-6xy+y2-4x+1=0,
∴(9x2-6xy+y2)+(4x2-4x+1)=0
∴(3x-y)2+(2X-1)2=0,
∵(3x-y)2≥0,(2X-1)2≥0,
∴3x-y=0,x=$\frac{1}{2}$,
∴x=$\frac{1}{2}$,y=$\frac{3}{2}$,
∴x+y=2,
∴(x+y)2013•x2012=22013×($\frac{1}{2}$)2012=2×(2×$\frac{1}{2}$)2102=2.

点评 本题考查配方法的应用、非负数的性质、积的乘方公式,熟练掌握非负数的性质是解题的关键,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.计算:
(1)(-3)4×($\frac{1}{3}$)4=1
(2)(-2)9÷(-2)10=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先阅读学习,再求解问题:材料:解方程:x2+3x-10=0.
解:原方程可化为(x+5)(x-2)=0 所以x+5=0或x-2=0
由x+5=0得x-5  由x-2=0得x=2     所以x=-5或x=2为原方程的解
问题:解方程:x2-2x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.计算:$\frac{\sqrt{3}+2\sqrt{5}+\sqrt{7}}{(\sqrt{3}+\sqrt{5})(\sqrt{5}+\sqrt{7})}$=(  )
A.$\frac{\sqrt{7}+\sqrt{3}}{2}$B.$\frac{\sqrt{7}-\sqrt{3}}{2}$C.$\frac{\sqrt{3}-\sqrt{7}}{2}$D.$\frac{-\sqrt{7}-\sqrt{3}}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若4x+5y-2=0,则16x•32y=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.简便计算:19.52-0.52

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是(  )
A.70°B.110°C.140°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,四边形ABCD和四边形DEFG都是正方形,点H是BF的中点,连接HA、HG.
(1)若三点B、D、F在同一直线上,探索HA,HG的数量关系和位置关系,并给予证明.
(2)若三点B,D,F不在同一直线上,如图②,其他条件不变,那么(1)中的结论是否仍然成立,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.计算$(-1{)^{2016}}+|{-3}|+(2-\sqrt{3}{)^0}$=5.

查看答案和解析>>

同步练习册答案