分析 (1)结论:AH=GH,AH⊥GH,因为点H是中点,所以想到倍长中线的方法添加辅助线(如图1),接下来只要证明①AH=HM②AG=GM即可.
(2)形变结论不变,证明方法类似(1).
解答 解:(1)如图1,延长AH,FE交于点M,连接GM,AG,
∵四边形ABCD和四边形DEFG都是正方形,
∴AB=AD,∠ADB=∠GDF=∠ABD=∠DFE=45°,
∴∠ADG=90°,![]()
在△ABH与△HMF中,
$\left\{\begin{array}{l}{∠AHB=∠MHF}\\{BH=FH}\\{∠ABH=∠HFM}\end{array}\right.$,
∴△ABH≌△HMF,
∴AB=MF,AH=HM,
∴AD=MF,
在△AGD与△GMF中,
$\left\{\begin{array}{l}{AD=MF}\\{∠ADG=∠GFM=90°}\\{DG=DE}\end{array}\right.$,
∴△AGD≌△GMF,
∴AG=GM,∠AGD=∠FGM,
∵∠FGM+∠DGM=90°,
∴∠AGD+∠DGM=90°,
∴∠AGM=90°,![]()
∴△AGM是等腰直角三角形,
∴AH=HG,GH⊥AM;
(2)结论仍然成立,AH=GH,AH⊥GH,
理由:如图2,延长AH到M使HM=AH,连接AG,FM,GM,FM交DE于K,
在△ABH与△HMF中,
$\left\{\begin{array}{l}{AH=HM}\\{∠AHB=∠FHM}\\{BH=FH}\end{array}\right.$,
∴△ABH≌△HMF,
∴AB=MF,AH=HM,∠ABH=∠HFM,
∴AD=MF,AB∥FM,
∴FM∥CD,
∴∠MKD+∠CDE=180°,
∵∠ADG+∠CDE=180°,
∴∠DKM=∠ADG,
∵GF∥DE,
∴∠GFM=∠DKM,
∴∠ADG=∠GFM,
在△AGD与△GMF中,
$\left\{\begin{array}{l}{AD=MF}\\{∠ADG=∠GFM}\\{DG=DE}\end{array}\right.$,
∴△AGD≌△GMF,
∴AG=GM,∠AGD=∠FGM,
∵∠FGM+∠DGM=90°,
∴∠AGD+∠DGM=90°,
∴∠AGM=90°,
∴△AGM是等腰直角三角形,
∴AH=HG,GH⊥AM.
点评 本题考查了全等三角形的判定和性质,正方形的性质,等腰直角三角形的判定和性质,添加辅助线构造全等三角形是解题的关键,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①②③ | B. | ①②④ | C. | ①③④ | D. | ②③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com