精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC三点在同一直线上,分别以ABBC为边,在直线AC的同侧作等边ABD和等边BCE,连接AEBD于点M,连接CDBE于点N,连接MNBMN

1)求证:AECD

2)试判断BMN的形状,并说明理由;

3)设CDAE相交于点G,求∠AGC的度数.

【答案】1)见解析;(2)△BMN为等边三角形,理由见解析;(3)∠AGC120°.

【解析】

1)由△ABD与△BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到△ABE≌△DBC即可解决问题;2)△BMN为等边三角形,理由为:由第一问△ABE≌△DBC,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=EBC=60°,利用平角的定义得到∠MBE=NBC=60°,再由EB=CB,利用ASA可得出△EMB≌△CNB,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出△BMN为等边三角形;3)利用全等三角形的性质,证明∠DGM=ABM=60°即可.

1)证明:∵等边△ABD和等边△BCE

ABDBBEBC,∠ABD=∠EBC60°,

∴∠ABE=∠DBC120°,

在△ABE和△DBC中,

∴△ABE≌△DBCSAS).

AECD

2)解:△BMN为等边三角形,理由为:

∵△ABE≌△DBC

∴∠AEB=∠DCB

又∠ABD=∠EBC60°,

∴∠MBE180°﹣60°﹣60°=60°,

即∠MBE=∠NBC60°,

在△MBE和△NBC中,

∴△MBE≌△NBCASA),

BMBN,∠MBE60°,

则△BMN为等边三角形.

3)解:∵△ABE≌△DBC

∴∠EAB=∠BDC

∵∠AMB=∠DMG

∴∠ABM=∠DGM

∵△ABD是等边三角形,

∴∠ABM60°,

∴∠DGM=∠ABM60°,

∴∠AGC120°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,P是等边三角形ABC内一点,且PA=4PB=PC=2,以下五个结论:①∠ BPC=120°;②∠APC=120°;③;④AB=;⑤点PABC三边的距离分别为PE,PF,PG,则有 其中正确的有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+bx+c与直线AB交于A(-4,-4),B(0,4)两点,直线AC:y=-x-6y轴与点C.E是直线AB上的动点,过点EEFx轴交AC于点F,交抛物线于点G.

(1)求抛物线y=-x2+bx+c的表达式;

(2)连接GB、EO,当四边形GEOB是平行四边形时,求点G的坐标;

(3)①在y轴上存在一点H,连接EH、HF,当点E运动到什么位置时,以A、E、F、H为顶点的四边形是矩形?求出此时点E、H的坐标;

②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求AM+CM的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙OAB=AC,延长BC至点D,使CD=CA,连接AD⊙O于点E,连接BE、CE.

(1)求证:△ABE≌△CDE;

(2)填空:

∠ABC的度数为   时,四边形AOCE是菱形;

AE=6,EF=4,DE的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x<0)的图象经过AO的中点C,交AB于点D.若点D的坐标为(﹣4,n),且AD=3.

(1)求反比例函数y=的表达式;

(2)求经过C、D两点的直线所对应的函数解析式;

(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(-3,2)B(-4,-3)C(-1,-1)

(1)①在图中作出ABC 关于y轴对称的A1B1C1并写出点C1 的坐标(直接写答案):C1______;②A1B1C1 的面积为______

(2)y轴上画出点 P,使 PB+PC 最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCADE均为等腰直角三角形,连接BE,点F、G分别为AD、AC的中点,连接FG.在ADEA旋转的过程中,当B、D、E三点共线时,AB=,AD=1,则线段FG的长为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是边长为3的等边三角形,BDC是等腰三角形,且BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则AMN的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示;慢车离乙地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示.根据图象进行以下研究.

解读信息:

(1)甲、乙两地之间的距离为   km;

(2)快车的速度是   km/h,慢车的速度是   km/h.

(3)求线段AB与线段OC的解析式;

(4)快、慢两车在何时相遇?相遇时距离乙地多远?

查看答案和解析>>

同步练习册答案