【题目】如图,已知正方形ABCD中,点E在边DC上,DE=2,EC=1.把△ADE绕点A旋转90°,点E的对应点为点F,则F、C两点的距离为___________.
【答案】5或
【解析】
根据正方形的性质可得AB=AD,∠ABC=∠D=90°,再根据旋转的性质可得AF=AE,然后利用“HL”证明Rt△ABF和Rt△ADE全等,根据全等三角形对应边相等可得BF=DE,再求出正方形的边长为3,然后分两种情况讨论求解.
如图,
在正方形ABCD中,AB=AD,∠ABC=∠D=90°,
由旋转的性质得,AF=AE,
在Rt△ABF和Rt△ADE中,
,
∴Rt△ABF≌Rt△ADE(HL),
∴BF=DE=2,
∵DE=2,EC=1,
∴正方形的边长为2+1=3,
①点F在线段CB延长线上时,FC=BF+BC=3+2=5;
②当线段AE逆时针旋转90°时,延长CD、D’F’交于点E’,
由勾股定理得,F’C=.
故答案为:5或.
科目:初中数学 来源: 题型:
【题目】如图,是边长为3的等边三角形,是边上的一个动点,由向运动(不与重合),是延长线上一动点,与点同时以相同的速度由向延长线方向运动(不与重合)
(1)当时,求的长.
(2)过作于点,连结交于,在点的运动过程中,线段的长是否发生变化?若不变,求出的长度;若变化,求出变化范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=40°,∠B=72°.
(1)求∠DCE的度数;
(2)试写出∠DCE与∠A、∠B的之间的关系式.(不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知A、B两地相距600米,甲、乙两人同时从A地出发前往B地,所走路程y(米)与行驶时间x(分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②两分钟后乙每分钟走50米;③甲比乙提前3分钟到达B地;④当x=2或6时,甲乙两人相距100米.正确的有_____(在横线上填写正确的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜该地农业部门对2017年的油菜籽的生产成本、市场价格、种植面积和产量等进行了统计,并绘制了如下的统计表与统计图(如图):
请根据以上信息解答下列问题:
(1)种植每亩油菜所需种子的成本是多少元?
(2)农民冬种油菜每亩获利多少元?
(3)2017年该地全县农民冬种油菜的总获利是多少元?(结果用科学记数法表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级全体同学参加了爱心捐款活动,该校随机抽查了部分同学捐款的情况统计如图:
(1)求出本次抽查的学生人数,并将条形统计图补充完整;
(2)捐款金额的众数是___________元,中位数是_____________;
(3)请估计全校八年级1000名学生,捐款20元的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,于E,,D是AE上的一点,且,连接BD,CD.
试判断BD与AC的位置关系和数量关系,并说明理由;
如图2,若将绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;
如图3,若将中的等腰直角三角形都换成等边三角形,其他条件不变.
试猜想BD与AC的数量关系,请直接写出结论;
你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.
①b2>4ac;
②4a﹣2b+c<0;
③不等式ax2+bx+c>0的解集是x≥3.5;
④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2.
上述4个判断中,正确的是( )
A.①② B.①④ C.①③④ D.②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com