【题目】如图1,AB∥CD,EOF是直线AB、CD间的一条折线.
(1)说明:∠O=∠BEO+∠DFO.
(2)如果将折一次改为折二次,如图-2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.
【答案】证明见解析
【解析】试题分析:(1)过O作OM∥AB,根据平行线性质推出∠BEO=∠MOE,∠DFO=∠MOF,相加即可求出答案;
(2)过O作OM∥AB,PN∥AB,根据平行线性质求出∠BEO=∠EOM,∠PFC=∠NPF,∠MOP=∠NPO,代入求出即可.
试题解析:(1)证明:过O作OM∥AB,∵AB∥CD,∴AB∥OM∥CD,∴∠BEO=∠MOE,∠DFO=∠MOF,∴∠BEO+∠DFO=∠EOM+∠FOM,即∠EOF=∠BEO+∠DFO.
(2)∠BEO+∠P=∠O+∠PFC.证明如下:
过O作OM∥AB,PN∥AB,∵AB∥CD,∴AB∥OM∥PN∥CD,∴∠BEO=∠EOM,∠PFC=∠NPF,∠MOP=∠NPO,∴∠EOP﹣∠OPF=(∠EOM+∠MOP)﹣(∠OPN+∠NPF)=∠EOM﹣∠NPF,∠BEO﹣∠PFC=∠EOM﹣∠NPF,∴∠BEO﹣∠PFC=∠EOP﹣∠OPF,∴∠BEO+∠OPF=∠EOP+∠PFC.
科目:初中数学 来源: 题型:
【题目】在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表所示
选手 | 1号 | 2号 | 3号 | 4号 | 5号 |
得分 | 92 | 95 | 91 | 89 | 88 |
(1)计算出这5名选手的平均成绩;
(2)计算出这5名选手成绩的方差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某篮球队在一次联赛中共进行了10场比赛,已知10场比赛的平均得分为88分,且前9场比赛的得分依次为:97、91、85、91、84、86、85、82、88.
(1)求第10场比赛的得分;
(2)求这10场比赛得分的中位数,众数和方差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣2x+m+2=0有两个不等的实数根x1和x2
(1)求m的取值范围并证明x1x2=m+2;
(2)若|x1﹣x2|=2,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com