【题目】如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,A点的坐标为(﹣3,0),B点在原点的左侧,与y轴交于点C(0,3),点P是直线BC上方的抛物线上一动点
(1)求这个二次函数的表达式;
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C(如图1所示),那么是否存在点P,使四边形POP′C为菱形?若存在,请此时点P的坐标:若不存在,请说明理由;
(3)当点P运动到什么位置时,四边形ABCP的面积最大,并求出其最大值.
【答案】(1)y=﹣x2﹣2x+3;(2)存在.P点的坐标为(﹣,);(3)P点的坐标为(﹣,),四边形ABPC的面积的最大值为.
【解析】
(1)利用待定系数法直接将B、C两点直接代入y=x2+bx+c求解b,c的值即可得抛物线解析式;
(2)利用菱形对角线的性质及折叠的性质可以判断P点的纵坐标为﹣,令y=﹣即可得x2﹣2x﹣3=﹣,解该方程即可确定P点坐标;
(3)由于△ABC的面积为定值,当四边形ABCP的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线AC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ABCP的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABCP的最大面积及对应的P点坐标.
(1)∵C点坐标为(0,3),
∴y=﹣x2+bx+3,
把A(﹣3,0)代入上式得,0=9﹣3b+3,
解得,b=﹣2,
∴该二次函数解析式为:y=﹣x2﹣2x+3;
(2)存在.如图1,
设P点的坐标为(x,﹣x2﹣2x+3),PP′交CO于E,
当四边形POP'C为菱形时,则有PC=PO,连接PP′,则PE⊥CO于E,
∴OE=CE=,
令﹣x2﹣2x+3=,
解得,x1=﹣,x2=(不合题意,舍去).
∴P点的坐标为(﹣,).
(3)如图2,过点P作y轴的平行线与BC交于点Q,与OA交于点F,
设P(x,﹣x2﹣2x+3),设直线AC的解析式为:y=kx+t,
则,
解得:,
∴直线AC的解析式为y=x+3,
则Q点的坐标为(x,x+3),
当0=﹣x2﹣2x+3,
解得:x1=1,x2=﹣3,
∴AO=3,OB=1,则AB=4,
S四边形ABCP=S△ABC+S△APQ+S△CPQ
=ABOC+QPOF+QPAF
=×4×3+[(﹣x2﹣2x+3)﹣(x+3)]×3
=﹣(x+)2+.
当x=﹣时,四边形ABCP的面积最大,
此时P点的坐标为(﹣,),四边形ABPC的面积的最大值为.
科目:初中数学 来源: 题型:
【题目】北盘江大桥坐落于云南宜威与贵州水城交界处,横跨云贵两省,为目前世界第一高桥图1是大桥的实物图,图2是从图1中引申出的平面图,测得桥护栏BG=1.8米,拉索AB与护栏的夹角是26°,拉索ED与护栏的夹角是60°,两拉索底端距离BD为300m,若两拉索顶端的距离AE为90m,请求出立柱AH的长.(tan26°≈0.5,sin26°≈0.4,1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA、OB是⊙O的两条半径,OA⊥OB,C是半径OB上一动点,连接AC并延长交⊙O于D,过点D作圆的切线交OB的延长线于E,已知OA=6.
(1)求证:∠ECD=∠EDC;
(2)若BC=2OC,求DE长;
(3)当∠A从15°增大到30°的过程中,求弦AD在圆内扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,其图象的一部分如图所示.下列说法错误的是
A. abc<0B. a﹣b+c<0C. 3a+c<0D. 当﹣1<x<3时,y>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分)
为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动.学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
请根据图表信息回答下列问题:
(1)频数分布表中的 , ;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在小时以上的学生评为“阅读之星”,请你估计该校名学生中评为“阅读之星”的有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,正方形A1B1C1D1,D1E1E2B2,A2D2C2D2,D2E3E4B3,A3B3C3D3,…,按如图所示的方式放置,其中点B1在y轴上,点C1,E1,E2,C2,E3,E4,C3,…,在x轴上已知正方形A1,B1,C1,D1,的边长为1,∠OB1C1=30°,B1C1∥B2C2∥B3C3,…,则正方形AnBnnDn的边长是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数y=ax2+bx+的图象经过点A(2,6)和B(4,4),直线l经过点B并与x轴垂直,垂足为Q.
(1)求二次函数的表达式;
(2)如图1,作AK⊥x轴,垂足为K,连接AO,点R是直线1上的点,如果△AOK与以O,Q,R为顶点的三角形相似,请直接写出点R的纵坐标;
(3)如图2,正方形CDEF的顶点C是第二象限抛物线上的点,点D,E在直线1上,以CF为底向右做等腰△CFM,直线l与CM,FM的交点分别是G,H,并且CG=GM,FH=HM,连接CE,与FM的交点为N,且点N的纵坐标是﹣1.
求:①tan∠DCG的值;
②点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司每月生产产品A4万件和同类新型产品B若干万件.产品A每件销售利润为200元,且在产品B销售量每月不超过3万件时,每月4万件产品A能全部销售,产品B的每月销售量y(万件)与每件销售利润x(元)之间的函数关系图象如图所示.
(1)求y与x的函数关系式;
(2)在保证A产品全部销售的情况下,产品B每件利润定为多少元时公司销售产品A和产品B每月可获得总利润w1(万元)最大?
(3)在不要求产品A全部销售的情况下,已知受产品B销售价的影响产品A每月销售量:(万件)与x(元)之间满足关系z=0.024x﹣3.2,那么产品B每件利润定为多少元时,公司每月可获得最大的利润?并求最大总利润w2(万元).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com