【题目】在平面直角坐标系xOy中,点A的坐标为(0,m),且m≠0,点B的坐标为(n,0),将线段AB绕点B旋转90°,分别得到线段B P1,B P2,称点P1,P2为点A关于点B的“伴随点”,图1为点A关于点B的“伴随点”的示意图.
(1)已知点A(0,4),
①当点B的坐标分别为(1,0),(-2,0)时,点A关于点B的“伴随点”的坐标分别为 ;
②点(x,y)是点A关于点B的“伴随点”,直接写出y与x之间的关系式;
(2)如图2,点C的坐标为(-3,0),以C为圆心, 为半径作圆,若在⊙C上存在点A关于点B的“伴随点”,直接写出点A的纵坐标m的取值范围.
【答案】(1)①(-3,-1),(5,1);(-6,2),(2,-2);②y=x-4或y=-x-4.
(2)-5≤m≤-1或1≤m≤5
【解析】试题分析:(1)①作 ⊥x轴于点M,作⊥x轴于点N,根据已知条件易证≌ ≌,根据全等三角形的性质可得=OB= ,OA=BM=BN,根据A(0,4),当点B的坐标为(1,0)时,即可求得点A关于点B的“伴随点”的坐标分别为(-3,-1),(5,1);根据A(0,4),当点B的坐标为(-2,0)时,即可求得点A关于点B的“伴随点”的坐标分别为(-6,2),(2,-2);②由①可知,x=y+4或-x-y=4,即可得y与x之间的关系式为y=x-4或y=-x-4;(2)设点A的坐标为(0,m),点(x,y)是点A关于点B的“伴随点”,由(1)的方法可得y=x-m或y=-x-m,当直线y=x-m相切时,如图(图中的红线),根据直线y=x-m与x轴、y轴所围成的三角形为等腰直角三角形、切线的性质。勾股定理可求得m=1,或m=5,即可得1≤m≤5,当直线y=-x-m相切时,如图(图中的蓝线),同理可得-5≤m≤-1,所以点A的纵坐标m的取值范围为-5≤m≤-1或1≤m≤5.
试题解析:
(1)①(-3,-1),(5,1);(-6,2),(2,-2).
②y=x-4或y=-x-4.
(2)-5≤m≤-1或1≤m≤5
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作
法和证明);
(2)连接DE,求证:△ADE≌△BDE。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】代数式8x+5y可以表示很多意义,例如:若x表示苹果每千克的钱数,y表示香蕉每千克的钱数,则8x+5y表示买8 kg苹果和5 kg香蕉共花的钱数.请你给8x+5y赋予另一种实际意义.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题10分)如图,已知抛物线与轴交于A,B两点,与轴交于点C,点B的坐标为(3,0)。
(1)求m的值及抛物线的顶点坐标;
(2)点P是抛物线对称轴上的一个动点,当PA+PC的值最小时,求点P的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A的坐标为(3,4),则A关于x轴对称的点的坐标是( )
A.(﹣3,4)
B.(3,﹣4)
C.(﹣3,﹣4)
D.(4,3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知下列锐角三角函数值,用计算器求锐角A , B的度数 .
(1)sinA=0.7,sinB=0.01;
(2)cosA=0.15,cosB=0.8;
(3)tanA=2.4,tanB=0.5 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)( ).
A.40
B.25
C.26
D.36
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com