【题目】几何探究题
(1)发现:在平面内,若BC=a,AC=b,其中a>b.
当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为 ;
当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为 .
(2)应用:点A为线段BC外一动点,如图3,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.
①证明:CD=BE;
②若BC=3,AC=1,则线段CD长度的最大值为 .
(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.
【答案】(1)a﹣b; a+b;(2)①证明见解析;②4;(3)满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2+3.
【解析】
(1)根据点A位于线段BC上时,线段AB的长取得最小值,根据点A位于BC的延长线上时,线段AB的长取得最大值,即可得到结论;
(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;
②由于线段CD长的最大值=线段BE的最大值,根据(1)中的结论即可得到结果;
(3)将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.
(1)∵当点A在线段BC上时,线段AB的长取得最小值,最小值为BC﹣AC,∵BC=a,AC=b,∴BC﹣AC=a﹣b,
当点A在线段BC延长线上时,线段AB的长取得最大值,最大值为BC+AC,∵BC=a,AC=b,∴BC+AC=a+b,
故答案为:a﹣b,a+b;
(2)①∵△ABD和△ACE是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠DAC=∠BAE,
在△ACD和△AEB中,,
∴△ACD≌△AEB(SAS),
∴CD=BE;
②∵线段CD的最大值=线段BE长的最大值,
由(1)知,当线段BE的长取得最大值时,点E在BC的延长线上,
∴最大值为BC+CE=BC+AC=4,
故答案为:4;
(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,
则△APN是等腰直角三角形,
∴PN=PA=2,BN=AM,
∵A的坐标为(2,0),点B的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM长的最大值=线段BN长的最大值,
∴当N在线段BA的延长线时,线段BN取得最大值,
最大值=AB+AN,
∵AN=AP=2,
∴最大值为2+3;
如图2,过P作PE⊥x轴于E,连接BE,
∵△APN是等腰直角三角形,
∴PE=AE=,
∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,
∴P(2﹣,).
如图3中,根据对称性可知,当点P在第四象限时,P(2﹣,﹣)时,也满足条件.
综上述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2+3.
科目:初中数学 来源: 题型:
【题目】已知是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边.
如图,点D在线段BC上移动时,直接写出和的大小关系;
如图图,点D在线段BC的延长线上或反向延长线上移动时,猜想的大小是否发生变化,若不变请直接写出结论并选择其中一种图示进行证明;若变化,请分别写出图、图所对应的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合题
(1)【问题提出】如图1.△ABC是等边三角形,点D在线段AB上.点E在直线BC上.且∠DEC=∠DCE.求证:BE=AD;
(2)【类比学习】如图2.将条件“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变.判断线段AB,BE,BD之间的数量关系,并说明理由.
(3)【扩展探究】如图3.△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在线段AB的反向延长线上,点E在直线BC上,且∠DEC=∠DCE,【类比学习】中的线段AB、BE、BD之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出线段AB,BE,BD之间的数量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代换)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.
(1)该顾客至多可得到元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数是( )
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:点D是△ABC所在平面内一点,连接AD、CD.
(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC;
(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;
(3)如图3,在 (2)的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a-b.例如:3☆(-4)=3+(-4)=-1,(-6)☆=-6-=-6.
(1)填空:(-4)☆3=______;
(2)如果(3x-4)☆(2x+8)=(3x-4)-(2x+8),求x的取值范围;
(3)如果(3x-7)☆(3-2x)=2,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是橘子的销售额随橘子卖出质量的变化表:
质量/千克 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | … |
销售额/元 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | … |
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当橘子卖出5千克时,销售额是_______元.
(3)如果用表示橘子卖出的质量,表示销售额,按表中给出的关系,与之间的关系式为______.
(4)当橘子的销售额是100元时,共卖出多少千克橘子?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com