【题目】一直角三角板的直角顶点在直线上,作射线三角板的各边和射线都处于直线的上方.
(1)将三角板绕点在平面内旋转,当平分时,如图1,如果,求的度数;
(2)如图2,将三角板绕点在平面内任意转动,如果始终在内,且,请问: 和有怎样的数量关系?
(3)如图2,如果平分,是否也平分?请说明理由.
【答案】(1);(2)∠BOC-∠AOM=;(3)OB平分∠CON.理由见解析
【解析】
(1)根据角平分线的意义可得∠COM=∠BOC=65°,再根据互余可求出∠AOC的度数;
(2)当OA始终在∠COM的内部时,有∠AOM+∠AOC=65°,∠AOC+∠BOC=90°,进而得出∠AOM与∠BOC的等量关系;
(3)根据余角的性质得出∠AOM+∠BOC=90°,再证明∠AOM+∠BON=90°,即可得出结论.
解:(1)∵平分,
∴∠COM=∠BOC=65°,
又∵∠AOC+∠BOC=90°,
∴∠AOC=90°-65°=25°;
(2)∵OA始终在∠COM的内部,
∠COM=∠AOM+∠AOC=65°,
∴∠AOC=65°-∠AOM,
又∵∠AOC+∠BOC=90°,
∴65°-∠AOM+∠BOC=90°,
∴∠BOC-∠AOM=;
(3)∵平分,
∴∠AOM=∠AOC,
又∵∠AOC+∠BOC=90°,
∴∠AOM+∠BOC=90°,
∵∠AOB=90°,
∴∠AOM+∠BON=90°,
∴∠BOC=∠BON,
∴平分.
科目:初中数学 来源: 题型:
【题目】在数轴上,点分别表示数,且,动点从点出发,以每秒个单位长度的速度沿数轴向右运动,点始终为线段的中点,设点运动的时间为秒.则:
在点运动过程中,用含的式子表示点在数轴上所表示的数.
当时,点在数轴上对应的数是什么?
设点始终为线段的中点,某同学发现,当点运动到点右侧时,线段长度始终不变.请你判断该同学的说法是否正确,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF的长是( )
A. 7.5 B. 8 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“五一”期间,小明到小陈家所在的美丽乡村游玩,在村头A处小明接到小陈发来的定位,发现小陈家C在自己的北偏东45°方向,于是沿河边笔直的绿道l步行200米到达B处,这时定位显示小陈家C在自己的北偏东30°方向,如图所示,根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头D处(精确到1米)(备用数据:≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.
(1)求证:△HBE∽△ABC;
(2)若CF=4,BF=5,求AC和EH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为( )
A.(505,504)B.(505,-504)C.(-504,504)D.(-504,-504)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在中,,于点D,BE平分,且于点E与CD相交于点F,于点H,交BE于点G,下列结论:①;②;③④;其中正确的是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”
用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com