【题目】“五一”期间,小明到小陈家所在的美丽乡村游玩,在村头A处小明接到小陈发来的定位,发现小陈家C在自己的北偏东45°方向,于是沿河边笔直的绿道l步行200米到达B处,这时定位显示小陈家C在自己的北偏东30°方向,如图所示,根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头D处(精确到1米)(备用数据:≈1.414,≈1.732)
科目:初中数学 来源: 题型:
【题目】已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过点A、B,并与x轴交于另一点C,其顶点为P.
(1)求a,k的值;
(2)抛物线的对称轴上是否存在一点M,使△ABM的周长最小,若存在,求出△ABM的周长;若不存在,请说明理由;
(3)若以AB为直径画圆,与抛物线的对称轴交于点N,求出点N坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读材料)
我们知道“在数轴上表示的两个数,右边的数总比左边的数大”,利用此规律,我们可以求数轴上两个点之间的距离,具体方法是:用右边的数减去左边的数的差就是表示这两个数的两点之间的距离.若点表示的数是,点表示的数是,点在点的右边(即),则点,之间的距离为(即).
例如:若点表示的数是-6,点表示的数是-9,则线段.
(理解应用)
(1)已知在数轴上,点表示的数是-2020,点表示的数是2020,求线段的长;
(拓展应用)
如图,数轴上有三个点,点表示的数是-2,点表示的数是3,点表示的数是.
(2)当,,三个点中,其中一个点是另外两个点所连线段的中点时,求的值;
(3)在点左侧是否存在一点,使点到点,点的距离和为19?若存在,求出点表示的数:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一直角三角板的直角顶点在直线上,作射线三角板的各边和射线都处于直线的上方.
(1)将三角板绕点在平面内旋转,当平分时,如图1,如果,求的度数;
(2)如图2,将三角板绕点在平面内任意转动,如果始终在内,且,请问: 和有怎样的数量关系?
(3)如图2,如果平分,是否也平分?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点是直线上一点,,是的平分线.
(1)当点,在直线的同侧,且在的内部时(如图1所示 ), 设,求的大小;
(2)当点与点在直线的两旁(如图2所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由;
(3)将图2 中的射线绕点顺时针旋转,得到射线,设,若,则的度数是 (用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形ABCD的边长为6,E、F、P分别是AB、CD、AD上的点(均不与正方形顶点重合)且PE=PF,PE⊥PF.
(1)求证:AE+DF=6
(2)设AE=,五边形EBCFP的面积为,求与的函数关系式,并求出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列代数式或方程解应用题:
已知小明的年龄是岁,小红的年龄比小明的年龄的倍小岁,小华的年龄比小红的年龄大岁,求这三名同学的年龄的和.
小亮与小明从学校同时出发去看在首都体育馆举行的一场足球赛, 小亮每分钟走,他走到足球场等了分钟比赛才开始:小明每分钟走,他走到足球场,比赛已经开始了分钟.问学校与足球场之间的距离有多远?
请根据图中提供的信息,回答下列问题:
①一个水瓶与一个水杯分别是多少元?
②甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买个水瓶和个水杯,请问选择哪家商场更合算?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com