精英家教网 > 初中数学 > 题目详情

【题目】如图,过点P(2,)作x轴的平行线交y轴于点A,交双曲线于点N,作PM⊥AN交双曲线于点M,连接AM,若PN=4.

(1)求k的值;

(2)设直线MN解析式为y=ax+b,求不等式的解集.

【答案】(1) (2)0<x≤2或x≥6

【解析】

(1)首先根据点P(2,)的坐标求出N点的坐标,代入反比例函数解析式即可求出;

(2)利用图形两函数谁在上上面谁大,交点坐标即是函数大小的分界点,可以直接判断出函数的大小关系.

解:(1)依题意,则AN=4+2=6,

N(6,2),

N(6,2)代入y=得:

xy=12

k=12

(2)M点横坐标为2,

M点纵坐标为:=6

M(2,6),

∴由图象知,≥ax+b的解集为:

0<x≤2x≥6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为3,则阴影部分的面积为__(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学兴趣小组的活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图①位置放置,ADAE在同一直线上,ABAG在同一直线上.

⑴小明发现DGBE,请你帮他说明理由.

⑵如图②,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有RtABC,∠BAC=90°,AB=AC,A(-3,0),B(0,1),C(m,n)。

(1)请直接写出C点坐标。

(2)ABC 沿x轴的正方向平移t个单位,两点的对应点、正好落在反比例函数在第一象限内图象上。请求出t,k的值。

(3)(2)的条件下,问是否存x轴上的点M和反比例函数图象上的点N,使得以、M、N为顶点的四边形构成平行四边形?如果存在,请求出所有满足条件的点M和点N的坐标;如果不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车销售公司2月份销售新上市一种新型低能耗汽车20辆,由于该型汽车的优越的经济适用性,销量快速上升,4月份该公司销售该型汽车达45辆.

(1)求该公司销售该型汽车3月份和4月份的平均增长率;

(2)该型汽车每辆的进价为10万元;且销售a辆汽车,汽车厂返利销售公司0.03a万元/辆,该公司的该型车售价为11万元/辆,若使5月份每辆车盈利不低于2.6万元,那么该公司5月份至少需要销售该型汽车多少辆?此时总盈利至少是多少万元?(盈利=销售利润+返利)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为维护南海主权,我海军舰艇加强对南海海域的巡航,日上午时,我海巡号舰艇在观察点处观测到其正东方向海里处有一灯塔,该舰艇沿南偏东的方向航行,时到达观察点,测得灯塔位于其北偏西方向,求该舰艇的巡航速度?(结果保留整数)

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,yx成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x的函数关系式为________.

(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;

(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,AB=AC,以AB为直径的⊙OBC于点D,交AC于点E.

(1)∠BAC为锐角时,如图,求证:∠CBE=∠BAC;

(2)∠BAC为钝角时,如图②,CA的延长线与⊙O相交于点E,(1)中的结论是否仍然成立?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,以边AB为直径作O,交斜边BCDE在弧上,连接AEEDDA,连接AEEDDA

(1)求证:∠DAC=∠AED

(2)若点E的中点,AEBC交于点F,当BD=5,CD=4时,求DF的长.

查看答案和解析>>

同步练习册答案