【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,点E在AC的延长线上,且∠CBE=∠BAC.
(1)求证:BE是⊙O的切线;
(2)若∠ABC=65°,AB=6,求劣弧AD的长.
【答案】(1)证明见解析(2)
【解析】
(1)连接,根据圆周角的性质求得。根据等腰三角形的性质三效合一的性质得出,进而根据已知条件即可证明,从而证明是的切线;
(2)连接,等腰三角形的性质和三角形外角的性质,求出的度数,进而根据弧长公式即可求出.
(1)证明:如图,连接AD.
∵AB为直径,
∴∠ADB=90°,即AD⊥BC.
∵AB=AC,
∴∠BAD=∠CAD=∠BAC.
∵∠CBE=∠BAC,
∴∠CBE=∠BAD.
∵∠BAD+∠ABD=90°,
∴∠ABE=∠ABD+∠CBE=90°.
∵AB为⊙O直径,
∴BE是⊙O的切线.
(2)解:如图,连接OD.
∵∠ABC=65°,
∴∠AOD=2∠ABC=2×65°=130°.
∵AB=6,
∴圆的半径为3.
∴劣弧AD的长为=.
科目:初中数学 来源: 题型:
【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.
(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;
(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;
(3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当△ABC为直角三角形时,写出点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在某住房小区的建设中,为了提高业主的宜居环境,小区准备在一个长为米,宽为米的长方形草坪上修建两条宽为米的通道.
(1)剩余草坪的面积是多少平方米?
(2)当,时,剩余草坪的面积是多少平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数的图象过A(2,0),B(0,-1)和C(4,5)三点。
(1)求二次函数的解析式;
(2)设二次函数的图象与轴的另一个交点为D,求点D的坐标;
(3)在同一坐标系中画出直线,并写出当在什么范围内时,一次函数的值大于二次函数的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC边长为10,P在AB上,Q在BC延长线,CQ=PA,过点P作PE⊥AC点E,过点P作PF∥BQ,交AC边于点F,连接PQ交AC于点D,则DE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,射线AP在△ABC的外侧,点B关于AP的对称点为D,连接CD交射线AP于点E,连接BE.
(1)根据题意补全图形;
(2)求证:CD=EB+EC;
(3)求证:∠ABE=∠ACE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90° ,AC=3,BC=6,点D在AB上,AD=AC, AF⊥CD交CD于点E,交CB于点F,则CF的长是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,函数的图象与一次函数y=kx-k的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点, 且满足△PAB的面积是4,
直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在ABCD中,DE平分∠ADB,交AB于E,BF平分∠CBD,交CD于F.
(1)求证:△ADE≌△CBF;
(2)当AD与BD满足什么关系时,四边形DEBF是矩形?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com