【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0; ②abc>0; ③8a+c<0; ④9a+3b+c>0.其中,正确结论的个数( )
A. 1B. 2C. 3D. 4
【答案】B
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
①由图知:抛物线与x轴有两个不同的交点,则△=b2﹣4ac>0,故①正确;
②抛物线开口向上,得:a>0;对称轴为x1,则b=﹣2a,故b<0;
抛物线交y轴于负半轴,得:c<0;
所以abc>0;故②正确;
③观察图象得当x=﹣2时,y>0,即4a﹣2b+c>0.
∵b=﹣2a,∴4a+4a+c>0,即8a+c>0,故③错误;
④根据抛物线的对称轴方程可知:(﹣1,0)关于对称轴的对称点是(3,0);
当x=﹣1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故④错误;
综上所述:正确的说法是:①②.
故选B.
科目:初中数学 来源: 题型:
【题目】把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,则球的半径长是( )
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线的对称轴是直线,且过点(1,0).顶点位于第二象限,其部分图像如图所示,给出以下判断:
①且;
②;
③;
④;
⑤直线与抛物线两个交点的横坐标分别为,则.其中正确的个数有( )
A. 5个B. 4个C. 3个D. 2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数和一次函数,我们把 称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(1,0)和抛物线E上的点B(2,n),请完成下列任务:
(尝试)
(1)当t=2时,抛物线的顶点坐标为 .
(2)判断点A是否在抛物线E上;
(3)求n的值.
(发现)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,定点的坐标 .
(应用)二次函数是二次函数和一次函数 的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,中,于,下列条件:;(2)∠B=∠DAC;(3)= ;(4)AB2=BDBC.其中一定能够判定是直角三角形的有( )
A. 0个B. 1个C. 2个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x+bx+c,经过点A(0,5)和点B(3,2)
(1)求抛物线的解析式:
(2)现有一半径为l,圆心P在抛物线上运动的动圆,问⊙P在运动过程中,是否存在⊙P与坐标轴相切的情况?若存在,请求出圆心P的坐标:若不存在,请说明理由;
(3)若⊙Q的半径为r,点Q 在抛物线上、⊙Q与两坐轴都相切时求半径r的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点.
(1)求反比例函数与一次函数的解析式;
(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:
①abc>0;
②该抛物线的对称轴在x=﹣1的右侧;
③关于x的方程ax2+bx+c+1=0无实数根;
④≥2.
其中,正确结论的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com