精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=x+bx+c,经过点A05)和点B32

1)求抛物线的解析式:

2)现有一半径为l,圆心P在抛物线上运动的动圆,问P在运动过程中,是否存在P与坐标轴相切的情况?若存在,请求出圆心P的坐标:若不存在,请说明理由;

3)若Q的半径为r,点Q 在抛物线上、Q与两坐轴都相切时求半径r的值

【答案】1

2 P2,1)或(1,2)或(-1,10

3

【解析】

解:(1)将代入方程

解得:

抛物线的解析式为:

2

抛物线的顶点是,和y轴的交点是

⊙P上一点和坐标轴相切就意味着抛物线上的点到坐标轴的距离是⊙P的半径1

即:抛物线上某点的横坐标或纵坐标为

时,

时,

时,

时,方程无解

存在P与坐标轴相切的情况,且相切时圆点的坐标为

3Q的点Q 在抛物线上,说明Q的横纵坐标符合抛物线的方程

由第二问的说明得:Q与两坐轴都相切,说明Q的横纵坐标的绝对值相等,有因为Q的特点,纵坐标恒为正,则有带入抛物线的方程:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AP是⊙O的切线,点A为切点,BP与⊙O交于点C,点DAP的中点,连结CD.

(1)求证:CD是⊙O的切线;

(2)若AB=2,P=30°,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB=90°,∠OAB=30°,反比例函数的图象过点,反比例函数的图象过点A

1)求的值.

2)过点BBCx轴,与双曲线交于点C,求△OAC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线和直线l:y=kx+b,点A(-3,-3)B(1,-1)均在直线l上.

1)若抛物线C与直线l有交点,求a的取值范围;

2)当a=-1,二次函数的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;

3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yax2+bx+ca≠0)的图象如图所示,有下列结论:b2﹣4ac>0; ②abc>0; ③8a+c<0; ④9a+3b+c>0.其中,正确结论的个数(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则

①二次函数的最大值为a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④当y>0时,﹣1<x<3,其中正确的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求解体验:

1)已知抛物线 y=﹣x2+bx3 经过点(﹣10),则 b ,顶点坐标为 ,该抛物线关于点(01)成中心对称的抛物线表达式是

抽象感悟:

我们定义:对于抛物线 yax2+bx+ca≠0),以 y 轴上的点 M0m)为中心,作该抛物线关于点 M 对称的 抛物线 y′,则我们又称抛物线 y′为抛物线 y 衍生抛物线,点 M 衍生中心

2)已知抛物线 y=﹣x22x+5 关于点(0m)的衍生抛物线为 y′,若这两条抛物线有交点,求 m 的取值范 围.

问题解决:

3)已知抛物线 yax2+2axba≠0

①若抛物线 y 的衍生抛物线为 y′bx22bx+a2b≠0),两抛物线有两个交点,且恰好是它们的顶点,求 ab 的值及衍生中心的坐标;

②若抛物线 y 关于点(0k+12)的衍生抛物线为 y1,其顶点为 A1;关于点(0k+22)的衍生抛物线为 y2,其顶点为 A2;关于点(0k+n2)的衍生抛物线为 yn,其顶点为 Ann 为正整数).求 An An+1 的长(用含 n 的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD绕点A逆时针旋转45°得到正方形AB1C1D1,边B1C1CD交于点O,则四边形AB1OD的面积是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+bx3经过点ABC,已知点A(﹣10),点B30

1)求抛物线的解析式

2)点D为抛物线的顶点,DEx轴于点E,点N是线段DE上一动点

①当点N在何处时,△CAN的周长最小?

②若点Mm0)是x轴上一个动点,且∠MNC90°,求m的取值范围.

查看答案和解析>>

同步练习册答案