【题目】在平面直角坐标系中,已知抛物线和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.
(1)若抛物线C与直线l有交点,求a的取值范围;
(2)当a=-1,二次函数的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;
(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.
【答案】(1)a≤且a≠0;(2)m=-3或m=3;(3)或a≤-2;
【解析】
(1)点,代入,求出;联立与,则有,即可求解;
(2)根据题意可得,,当时,有,或;①在左侧,随的增大而增大,时,有最大值,;
②在对称轴右侧,随最大而减小,时,有最大值;
(3)①时,时,,即;
②时,时,,即,直线的解析式为,抛物线与直线联立:,,则,即可求的范围.
解:(1)点,代入,
,
,
;
联立与,则有,
抛物线与直线有交点,
,
a≤且a≠0;
(2)根据题意可得,,
,
抛物线开口向下,对称轴,
时,有最大值,
∴当时,有,
或,
①在左侧,随的增大而增大,
时,有最大值,
;
②在对称轴右侧,随最大而减小,
时,有最大值;
综上所述:m=-3或m=3;
(3)①时,时,,
即;
②时,时,,
即,
直线的解析式为,
抛物线与直线联立:,
,
,
,
的取值范围为或a≤-2.
科目:初中数学 来源: 题型:
【题目】如图所示是某斜拉索大桥,主索塔呈抛物线,主索塔底部在水面部分的宽度AB=50米,主索塔的最高点E距水面的垂直距离为100米,桥面CD距水面的咨度为36米,则桥的宽度CD_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过A(),B(),C()三点.
(1)求抛物线的解析式;
(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;
(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4 米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数和一次函数,我们把 称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.现有点A(1,0)和抛物线E上的点B(2,n),请完成下列任务:
(尝试)
(1)当t=2时,抛物线的顶点坐标为 .
(2)判断点A是否在抛物线E上;
(3)求n的值.
(发现)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,定点的坐标 .
(应用)二次函数是二次函数和一次函数 的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为,是边的中点,点在射线上,过作于,设.
(1)求证:;
(2)当也是边中点时,求的值;
(3)若以,,为顶点的三角形也与相似,试求的值;
(4)当点与点重合时,设交于点,试判断与的大小关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x+bx+c,经过点A(0,5)和点B(3,2)
(1)求抛物线的解析式:
(2)现有一半径为l,圆心P在抛物线上运动的动圆,问⊙P在运动过程中,是否存在⊙P与坐标轴相切的情况?若存在,请求出圆心P的坐标:若不存在,请说明理由;
(3)若⊙Q的半径为r,点Q 在抛物线上、⊙Q与两坐轴都相切时求半径r的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点E,F分别在边BC,AC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则AD的长为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线。若∠ABE=∠C,AE:ED=2:1,则△BDE与△ABC的面积比为何?( )
A. 1:6B. 1:9C. 2:13D. 2:15
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com