精英家教网 > 初中数学 > 题目详情
10.在锐角△ABC中,若∠B=2∠C,求∠C的范围.

分析 根据三角形的内角和等于180°,由∠B=2∠C,3∠C<180°,故0°<∠C<60°

解答 解:∵三角形的内角和等于180°,∠B=2∠C,
∴3∠C<180°,
∴0°<∠C<60°.

点评 本题主要考查了三角形的内角和定理,熟记三角形的内角和等于180°是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知三角形ABC、点D,过点D作三角形ABC平移后的图形,使D点与A点为对应点.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在?ABCD中,已知AB=a,BC=b,∠ABC=α
(1)连接AC,当a=4,b=6,α=60°,求AC的值;
(2)α为锐角,
①连接AC,求证:AC2<a2+b2
②连接BD,求证:BD2>a2+b2
(3)连接AC,BD,求证:AC2+BD2=2a2+2b2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)抛物线C1:y=(x+1)2-2绕坐标原点O旋转180°得抛物线C2,即:C1,C2关于坐标原点中心对称,则C2的解析式是:y=-(x-1)2+2;
(2)若两抛物线关于坐标原点中心对称,且一条抛物线的顶点在另一条抛物线上,我们称这两条抛物线为“共轭抛物线”
①(1)中的C1,C2是否为“共轭抛物线”?
②抛物线M:y=x2+bx+c的顶点坐标是(m,n),若抛物线M与它关于原点中心对称的图形是“共轭抛物线”,求n与m的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在同一平面内,下列说法中正确的有(  )
①若a∥b,b∥c,则a∥c;
②若a与b相交,b与c相交,则a与c相交;
③若a⊥b,b⊥c,则a⊥c;
④若a∥b,b⊥c,则a⊥c.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,抛物线y=-x2+3x与x轴交于一点B,顶点为A,连接BA并延长与y轴交于点C,则阴影部分的面积和为$\frac{27}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某商店试销一种成本为10元的文具.经试销发现,每天销售件数y(件)是每件销售价格x(元)的一次函数,且当每件按15元的价格销售时,每天能卖出50件;当每件按20元的价格销售时,每天能卖出40件.
(1)试求y关于x的函数解析式(不用写出定义域);
(2)如果每天要通过销售该种文具获得450元的利润,那么该种文具每件的销售价格应该定为多少元?(不考虑其他因素)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并确定在运动过程中是否存在某一时刻t,使得S△CPQ:S△ABC=9:100?若存在,求出t的值;若不存在,则说明理由.
(3)是否存在某一时刻t,使得△CPQ为等腰三角形?若存在,求出所有满足条件的t的值;若不存在,则说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A,B,C,D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图

请根据以上信息回答:
(1)本次参加抽样调查的居民有600人;
(2)扇形统计图中:a=30,b=10,并把条形统计图补充完整;
(3)若有外型完全相同的A,B,C,D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.

查看答案和解析>>

同步练习册答案