【题目】重庆八中将于2017年整体搬迁至渝北空港新城,新校园工程建设正在如火如荼的进行.经工程部管理人员同意,四位同学前往工地进行社会实践活动.如图,A、B、C是三个建筑原材料存放点,点B、C分别位于点A的正北和正东方向,AC=400米.四人分别测得∠C的度数如表:
甲 | 乙 | 丙 | 丁 | |
∠C(单位:度) | 34 | 36 | 38 | 40 |
他们又调查了各点的建筑材料存放量,并绘制了下列尚不完整的统计如图、如图:
(1)求表中∠C度数的平均数;
(2)求A处的建筑原材料存放量,并将如图补充完整;
(3)用(1)中的作为∠C的度数,要将A处的全部建筑原材料沿道路AB运到B处,已知运1方建筑原材料每米的费用为0.1元,求运完全部建筑原材料所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)
【答案】(1)=37(度);(2)原材料的总存放量是640方,在A处的存放量是80方;(3)运完全部建筑原材料所需的费用是2400元.
【解析】
(1)利用平均数公式即可求解;
(2)根据C种材料有320方,占50%,即可求得总方数,利用总方数乘以对应的百分比即可求得A处的存放量;
(3)利用A处的存放量乘以AB的长再乘以0.1即可.
(1)=(34+36+38+40)=37(度);
(2)原材料的总存放量是:320÷50%=640(方),
则在A处的存放量是:640(1﹣50%﹣37.5%)=80(方).
;
(3)∵在直角△ABC中,tanC= ,
∴AB=ACtan37°=400×0.75=300(米),
则运完全部建筑原材料所需的费用是:80×300×0.1=2400(元).
科目:初中数学 来源: 题型:
【题目】已知:正方形ABCD,∠EAF=45°.
(1)如图,当点E、F分别在边BC、CD上,连接EF,求证:EF=BE+DF;
童威同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF绕点A顺时针旋转90°,得△ABG,所以△ADF≌△ABG.
(2)如图,点M、N分别在边AB、CD上,且BN=DM.当点E、F分别在BM、DN上,连接EF,探究三条线段EF、BE、DF之间满足的数量关系,并证明你的结论.
(3)如图,当点E、F分别在对角线BD、边CD上.若FC=2,则BE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+b与反比例函数y=(k≠0)的图象的一支交于C(1,4),E两点,CA⊥y轴于点A,EB⊥x轴于点B,则以下结论:①k的值为4;②△BED是等腰直角三角形;③S△ACO=S△BEO;④S△CEO=15;⑤点D的坐标为(5,0).其中正确的是( )
A. ①②③B. ①②③④C. ②③④⑤D. ①②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
(1)求证:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为丰富同学们的校园生活,某校积极开展了形式多样的社团活动(每人仅限参加一项).小明在八年级随机抽取了2个班级,对这2个班级参加体育类社团活动的人数进行了统计,并绘制了下面的统计图.已知这2个班级共有6%的学生参加“足球”项目,且参加“足球”项目的学生数占参加体育类社团活动学生数的20%.
(1)这2个班参加体育类社团活动人数为 .
(2)请在图中将表示“棒球”项目的图形补充完整;
(2)若该校八年级共有600名学生,请你根据上述信息估计该校八年级共有多少名学生参加“棒球”项目.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用水平线和竖起线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S,该多边形各边上的格点个数为a,内部的格点个数为b,则S=a+(b-1).
对于正三角形网格中的类似问题也有对应结论:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,如图是该正三角形格点中的两个多边形(设格点多边形的面积为S,该多边形各边上的格点个数为m,内部的格点个数为n):
(1)根据图中提供的信息填表:
m | n-1 | s | |
多边形1 | 11 | ______ | 15 |
多边形2 | 8 | 1 | ______ |
… | … | … | … |
(2)则S与m、m-1之间的关系为______(用含m、n的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)是重庆中国三峡博物馆,又名重庆博物馆,中央地方共建国家级博物馆图(2)是侧面示意图.某校数学兴趣小组的同学要测量三峡博物馆的高GE.如(2),小杰身高为1.6米,小杰在A处测得博物馆楼顶G点的仰角为27°,前进12米到达B处测得博物馆楼顶G点的仰角为39°,斜坡BD的坡i=1:2.4,BD长度是13米,GE⊥DE,A、B、D、E、G在同一平面内,则博物馆高度GE约为_____米.(结果精确到1米,参考数据tan27°≈0.50,tan39°≈0.80)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com