【题目】如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.
(1)探究DB'与EC'的数量关系,并结合图2给予证明;
(2)填空:
①当旋转角α的度数为_____时,则DB'∥AE;
②在旋转过程中,当点B',D,E在一条直线上,且AD=时,此时EC′的长为_____.
【答案】(1)DB'=EC',证明详见解析;(2)①60°;②-1.
【解析】
(1)由旋转的性质可得∠DAE=∠B'AC'=90°,AB'=AC',利用“SAS”可证明△ADB'≌△AEC',可得DB'=EC';(2)由平行线的性质和直角三角形的性质可求解;(3)由全等三角形的性质可得∠ADB'=∠AEC',B'D=C'E,由等腰直角三角形的性质可得B'C'=AB'=4,DE=AD=2,由勾股定理可求EC'的长.
(1)DB'=EC',
理由如下:∵AB=AC,D、E分别是AB、AC边的中点,
∴AD=AE,
由旋转可得,∠DAE=∠B'AC'=90°,AB'=AC',
∴∠DAB'=∠EAC',且AB'=AC',AD=AE
∴△ADB'≌△AEC'(SAS),
∴DB′=EC′,
(2)①∵DB′∥AE,
∴∠B'DA=∠DAE=90°,
∵AD=AB,AB=AB',
∴AD=AB',
∴∠AB'D=30°,
∴∠DAB'=60°,
∴旋转角α=60°,
故答案为60°,
②如图,当点B',D,E在一条直线上,
∵AD=,
∴AB'=2,
∵△ADE,△AB'C'是等腰直角三角形,
∴B'C'=AB'=4,DE=AD=2,
由(1)可知:△ADB'≌△AEC',
∴∠ADB'=∠AEC',B'D=C'E,
∵∠ADB'=∠DAE+∠AED,∠AEC'=∠AED+∠DEC',
∴∠DEC'=∠DAE=90°,
∴B'C'2=B'E2+C'E2,
∴16=(2+EC')2+C'E2,
∴CE=﹣1,
故答案为:﹣1.
科目:初中数学 来源: 题型:
【题目】二次函数
(1)写出函数图象的开口方向、顶点坐标和对称轴.
(2)判断点是否在该函数图象上,并说明理由.
(3)求出以该抛物线与两坐标轴的交点为顶点的三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索与证明:(1)如图1,直线m经过正三角形ABC的顶点A,在直线m上取两点 D,E,使得∠ADB=60°,∠AEC=60°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明;
(2)将(1)中的直线m绕点A逆时针方向旋转一个角度到如图2的位置,并使∠ADB=120°,∠AEC=120°.通过观察或测量,请直接写出线段BD,CE与DE之间满足的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.
(1)求AE的长(用x的代数式表示)
(2)当y=108m2时,求x的值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在正方形网格中,△ABC的顶点坐标分别为(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).请在所给直角坐标系中按要求画图和解答下列问题:
(1)将△ABC绕着某点按顺时针方向旋转得到△A′B'C',请直接写出旋转中心的坐标和旋转角度.
(2)画出△ABC关于点A成中心对称的△AED,若△ABC内有一点P(a,b),请直接写出经过这次变换后点P的对称点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAO=AMAP.
(1)连接OP,证明:△ADM∽△APO;
(2)证明:PD是ΘO的切线;
(3)若AD=24,AM=MC,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为.6m.
⑴求建筑物BC的高度;
⑵求旗杆AB的高度.(结果精确到0.1m.参考数据:≈1.41,sin52°≈0.79,tan52°≈1.28)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋里装有分别标有汉字“美”、“丽”、“宝”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;
(2)甲从中任取一个球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“宝安”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三角形一条边的平方等于另两条边的乘积,我们称这个三角形是比例三角形.
(1)已知△ABC是比例三角形,AB=1,BC=2,求AC的长.
(2)如图1,在四边形ABCD中,AB=AD,对角线BD平分∠ABC,∠BAC=∠ADC
①求证:△ABC是比例三角形
②若AB∥DC,如图2,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com