【题目】已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【答案】B
【解析】解:∵抛物线开口向上,
∴a>0,
∵对称轴在y轴左边,
∴b>0,
∵抛物线与y轴的交点在x轴的上方,
∴c+2>2,
∴c>0,
∴abc>0,
∴结论①不正确;
∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,
∴△=0,
即b2﹣4a(c+2)=0,
∴b2﹣4ac=8a>0,
∴结论②不正确;
∵对称轴x=﹣=﹣1,
∴b=2a,
∵b2﹣4ac=8a,
∴4a2﹣4ac=8a,
∴a=c+2,
∵c>0,
∴a>2,
∴结论③正确;
∵对称轴是x=﹣1,而且x=0时,y>2,
∴x=﹣2时,y>2,
∴4a﹣2b+c+2>2,
∴4a﹣2b+c>0.
∴结论④正确.
综上,可得
正确结论的个数是2个:③④.
故选:B.
科目:初中数学 来源: 题型:
【题目】将抛物线y=(x﹣3)2﹣4向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )
A.y=(x﹣4)2﹣6B.y=(x﹣2)2﹣2
C.y=(x﹣1)2﹣3D.y=(x﹣4)2﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若直线AB与直线CD交于点O,OA平分∠COF,OE⊥CD.
(1)写出图中与∠EOB互余的角;
(2)若∠AOF=30°,求∠BOE和∠DOF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】张老师给同学们出了一道题:当x=2018,y=2017时,求[(2x3y-2x2y2)+xy(2xy-x2)]÷x2y的值.题目出完后,小明说:“老师给的条件y=2017是多余的.”小兵说:“不多余,不给这个条件,就不能求出结果.”你认为他们谁说得有道理?并说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学骑车去郊游,如图表示他离家的距离y(km)与所用时间x(h)之间的关系图象:
(1)根据图象回答:小明到达离家最远的地方需几小时?此时离家多远?
(2)求小明出发2.5h离家多远?
(3)小明出发多长时间距离家12km?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com