精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣10ax+16aa≠0)交x轴于AB两点,抛物线的顶点为D,对称轴与x轴交于点H,且AB=2DH

1)求a的值;

2)点P是对称轴右侧抛物线上的点,连接PDPQx轴于点Q,点N是线段PQ上的点,过点NNFDH于点FNEPD交直线DH于点E,求线段EF的长;

3在(2)的条件下,连接DNDQPB,当DN=2QNNQ3),2NDQ+DNQ=90°时,作NCPB交对称轴左侧的抛物线于点C,求点C的坐标.

【答案】(1);(2)3;(3)点C(﹣1,9)..

【解析】试题分析:(1)根据y=ax2-10ax+16a可以求得当y=0时,x的值,从而可以求得点A、B的坐标,由抛物线的顶点为D,对称轴与x轴交于点H,且AB=2DH,从而可以求得a的值;

(2)根据已知条件作出相应的图形,然后根据题意题目中的数量关系,通过灵活变形可以求得EF的长;

(3)根据题意可以画出相应的图形,然后根据题目中的关系,利用三角形相似,灵活变化可以求得点C的坐标.

试题解析:(1)令y=0,得x=2或x=8,∴点A(2,0),B(8,0),∴AB=6,

∵AB=2DH,∴DH=3,

∵OH=2+,∴D(5,﹣3),∴﹣3=a×52﹣10a×5+16a,得a=

(2)如图1,过点D作PQ的垂线,交PQ的延长线于点M,

∵NE⊥PD,∴∠DPN+∠PNE=90°,∵NF⊥DE,∴∠FEN+∠FNE=90°,

又∵DH⊥x轴,PQ⊥x轴,∴DE∥PQ,∴∠FEN=∠PNE,∴∠DPM=∠ENF,∴△EFN∽△DMP,

,设点P(t, ),则FN=DM=t﹣5,PM=+3,代入解得EF=3;

(3)如图2,作QG⊥DN于点G,∵DF∥PQ,∴∠FDN=∠DNQ,∵2∠NDQ+∠DNQ=90°,

∴2∠NDQ+∠FDN=90°,∵∠FDM=90°,∴∠NDM=2∠NDQ,∴∠NDQ=∠MDQ,∴QG=QM=DH=3,

设QN=m,则DN=2m,∵sin∠DNM=,sin∠QNG=,sin∠DNM=sin∠QNG,

,得DM=6=DG,∴OQ=5+6=11,

∴点P的纵坐标是: =9,∴点P(11,9),

∵NG=2m﹣6,在Rt△NGQ中,QG2+NG2=QN2

∴32+(2m﹣6)2=m2,得,m=3(舍)或m=5,

设C(n, ),作CK⊥x轴于点K,作NF⊥CK于点K,则CT=,NT=11﹣n,

∵P(11,9),则BQ=11﹣8=3,PQ=9,

∵CN⊥PB,PQ∥CK,PQ⊥x轴, ∴△CTN∽△BQP,

, 即, 解得,n=﹣1或n=10(舍去),

∴点C(﹣1,9).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:

(1)函数的自变量x的取值范围是

(2)下表是xy的几组对应值.

...

1

2

3

...

...

m

...

m的值;

(3)如图,在平面直角坐标系中,已描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,).结合函数的图象,写出该函数的其它性质(写两条即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形ABC的底边BC长为6,面积是24,腰AC的垂直平分线EF分别交ACAB边于EF点.若点DBC边的中点,点M为线段EF上一动点,则CDM周长的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)x3x4x5

(2)

(3)(﹣2mn22﹣4mn3(mn+1);

(4)3a2(a3b2﹣2a)﹣4a(﹣a2b)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点AC分别在∠GBE的边BGBE上,且AB=ACADBE,∠GBE的平分线与AD交于点D,连接CD

1)求证:CD平分∠ECA

2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

112+(-3.4)-(-13.4

2

30-5+-25-26

4)-4÷×

5×(-24

6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )

A. 汽车在0~1小时的速度是60千米/时; B. 汽车在2~3小时的速度比0~0.5小时的速度快;

C. 汽车从0.5小时到1.5小时的速度是80千米/时; D. 汽车行驶的平均速度为60千米/时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式.(不写出自变量x的取值范围);

(2)如果商店销售这种商品,每天要获得150元,那么每件商品的销售价应定为多少元?

(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分ABCPBD上一点,过点PPM^ADPN^CD,垂足分别为MN

1)求证:ADB=CDB

2)若ADC=90°,求证:四边形MPND是正方形。

查看答案和解析>>

同步练习册答案