【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:
(1)函数的自变量x的取值范围是 ;
(2)下表是x与y的几组对应值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如图,在平面直角坐标系中,已描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,).结合函数的图象,写出该函数的其它性质(写两条即可).
科目:初中数学 来源: 题型:
【题目】计算:
(1)2a(b2c3)2·(-2a2b)3;
(2)(2x-1)2-x(4x-1);
(3)632+2×63×37+372.(用简便方法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有160个零件,平均分配给甲、乙两个车间加工,乙车间因另有紧急任务,所以在甲车间加工3小时后才开始加工,因此比甲车间迟20分钟完成。
(1)已知甲、乙两车间的生产效率的比是1:3,则甲、乙两车间每小时各能加工多少零件?
(2)如果零件总数为a个,(1)中其它条件不变,则甲、乙两车间每小时各加工多少个零件(用含a的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小红在数学课上学习了角的相关知识后,立即对角产生了浓厚的兴趣.她查阅书籍发现两个有趣的概念,三角形中相邻两条边的夹角叫做三角形的内角;三角形一条边的延长线与其邻边的夹角,叫做三角形的外角.小红还了解到三角形的内角和是180°,同时她很容易地证明了三角形外角的性质,即三角形的一个外角等于与它不相邻的两个内角的和.于是,爱思考的小红在想,三角形的内角是否也具有类似的性质呢?三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
①尝试探究:
(1)如图1,∠1与∠2分别为△ABC的两个外角,试探究∠A与∠1+∠2之间存在怎样的数量关系?为什么?
解:数量关系:∠l+∠2=180°+∠A
理由:∵∠1与∠2分别为△ABC的两个外角
∴∠1=180°-∠3,∠2=180°-∠4
∴∠1+∠2=360°-(∠3+∠4)
∵三角形的内角和为180°
∴∠3+∠4=180°-∠A
∴∠l+∠2=360°-(180°-∠A)=180°+∠A
小红顺利地完成了探究过程,并想考一考同学们,请同学们利用上述结论完成下面的问题.
②初步应用:
(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2-∠C=________;
(3)如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,则∠P与∠A有何数量关系?________________.(直接填答案)
③拓展提升:
(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,则∠P与∠1、∠2有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求若干个相同的不为零的有理数的除法运算叫做除方.
如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3)等. 类比有理数的乘方,我们把 2÷2÷2 记作 2③,读作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)记作(-3)④,读作“-3 的圈 4 次方”.
一般地,把(a≠0)记作,读作“a的圈n次方”.
(1)直接写出计算结果: _____, _________, ___________,
(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,
请尝试将有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈 n 次方等于_____.
(3)计算 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com