精英家教网 > 初中数学 > 题目详情
11.如图,直角坐标系中,P(3,y)是第一象限内的点,且$tanα=\frac{4}{3}$,求sinα.

分析 根据在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,可得答案.

解答 解:如图:

作PC⊥x于C点,
由$tanα=\frac{4}{3}$=$\frac{y}{3}$,得y=4.
由勾股定理,得OP=$\sqrt{O{C}^{2}+P{C}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
sinα=$\frac{PC}{OP}$=$\frac{4}{5}$.

点评 本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,抛物线y=ax2+bx+c的开口向上,顶点M在第三象限,抛物线与x轴交于A、B 两点,与y轴负半轴交于点C,点A坐标为(-3,0),点B坐标为(1,0).
(1)试用含a的式子表示b,c;
(2)连接AM、CM、CB,试说明△OCB与四边形AMCO的面积之比是一个定值,并求出这个定值;
(3)连接AC,若∠ACM=90°,解决下列问题:
①求抛物线解析式并证明∠MAO=∠ACB;
②线段AM上是否存在点D,使以点A、O、D为顶点的三角形与△ACB相似?若存在,求出点D坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图所示是由一些相同的小立方体搭成的几何体从正面、左面和上面看到的图形,则所搭这个几何体的小方体有5个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在日历上,我们可以发现其中某些数满足一定的规律,如图是2014年12月份的日历.

如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:
7×9-1×15=48,18×20-12×26=48,不难发现,结果都是48.
(1)请将上面三个空补充完整;
(2)我们发现选择其他类似的部分规律也相同,请你利用整式的运算对以上的规律加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:
①$2sin60°-\frac{1}{{\sqrt{3}-2}}$
②$(\sqrt{18}-2\sqrt{24})$÷$\sqrt{3}$-4$\sqrt{\frac{1}{8}}$×$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知x=2t-8,y=10-t,S=$\sqrt{xy}$,则S有最大值,这个值是3$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.
(1)依题意补全图1;(画图工具不限)
(2)若∠PAB=25°,求∠ADF的度数;
(3)如图2,若60°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:3(x-2)-2(1+2x).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,AB=AC,点D在BC上,DE∥AC交AB于点E,DF∥AB交AC于点F,试说明线段DE,DF,AB三者之间的数量关系.

查看答案和解析>>

同步练习册答案